
D3.5 FRAMEWORK
SPECIFICATION2

02/11/2022

Ref. Ares(2022)7573290 - 02/11/2022

Grant Agreement No.: 957338
Call: H2020-ICT-2020-1

Topic: ICT-54-2020
Type of action: RIA

D3.5 FRAMEWORK SPECIFICATION 2

WORK PACKAGE WP3

TASK T3.3

DUE DATE 31/8/2022

SUBMISSION DATE 02/11/2022

DELIVERABLE LEAD IEXEC

VERSION 1.0

AUTHORS Souvik Sengupta (IEXEC)
Anthony Simonet-Boulogne (IEXEC)
Vlado Stankovski (UL)
Alberto Ciaramella (IS)
Marco Ciaramella (IS)

REVIEWERS Petar Kochovski (UL)
Thanasis Papaioannou (AUEB)

ABSTRACT This deliverable provides updated specification of the ON-
TOCHAIN framework andarchitecture (compared to the initial
architecture described in D3.3 and D3.4), of its components
(including those developed by third parties during Open Call
1 and Open Call 2) and the specification of the ONTOCHAIN
pilot deployment which will be used to evaluate the project
results.

KEYWORDS Decentralisation, blockchain, trustworthy content, data trace-
ability, trustworthy knowledge exchange, privacy protection,
web semantic, service interoperability

2

Document Revision History

Version Date Description of change List of contributor(s)

0.1 01/12/2021 Table of content & initial
draft

Anthony Simonet-Boulogne

0.2 21/08/2022 v0.2 second version Souvik Sengupta

0.3 23/08/2022 update OC1 short projects Souvik Sengupta

0.4 25/08/2022 update OC1 long projects Souvik Sengupta

0.5 26/08/2022 modify the introduction
section

Anthony Simonet-Boulogne

0.6 31/08/2022 update the OC2 short
projects

Souvik Sengupta

0.7 15/09/2022 update the OC2 long
projects

Souvik Sengupta

0.8 10/10/2022 address the internal
reviewers comments

Anthony Simonet-Boulogne

0.9 16/10/2022 update the section 4 for
pilot network description

Souvik Sengupta

1.0 31/10/2022 final modification and
address rest of the reviewers
comments

Souvik Sengupta

3

DISCLAIMER

The information, documentation and figures available in this deliverable are written
by the "Trusted, traceable and transparent ontological knowledge on blockchain ON-
TOCHAIN " project’s consortium under EC grant agreement 957338, and do not nec-
essarily reflect the views of the European Commission. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible
for the use which may be made of the information contained therein. The information
in this document is provided as is and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability. Moreover, it is clearly stated that theONTOCHAINConsortium reserves
the right to update, amend ormodify any part, section or detail of the document at any
point in time without prior information.

The ONTOCHAIN project is funded by the European Union’s Horizon 2020 Research
and Innovation programme under grant agreement no. 957338.

COPYRIGHT NOTICE

© 2020 ONTOCHAIN

This documentmay containmaterial that is copyrighted of certainONTOCHAINbenefi-
ciaries andmay not be reused or adaptedwithout permission. All ONTOCHAIN Consor-
tiumpartners have agreed to the full publicationof this document. The commercial use
of any information contained in this document may require a license from the propri-
etor of that information. Reproduction for non-commercial use is authorised provided
the source is acknowledged.

4

The ONTOCHAIN Consortium is the following:

Participant
number

Participant organisation name Short
name

Country

1 EUROPEAN DYNAMICS LUXEMBOURG SA ED LU

2 UNIVERZA V LJUBLJANI UL SI

3 IEXEC BLOCKCHAIN TECH IEXEC FR

4 INTELLISEMANTIC SRL IS IT

5 ATHENS UNIVERSITY OF ECONOMICS AND
BUSINESS – RESEARCH CENTER

AUEB EL

6 ELLINOGERMANIKO EMPORIKO & VIOMICHANIKO
EPIMELITIRIO

GHCCI EL

7 F6S NETWORK LIMITED F6S IE

5

EXECUTIVE SUMMARY

This document is deliverable "D3.5 Framework Specification 2" of the ONTOCHAIN
project fundedunder theHorizon2020Research & Innovation program "ONTOCHAIN–
Trusted, traceable and transparent ontological knowledge on blockchain".

The framework specification was produced by Task 3.3, after the execution of ON-
TOCHAINOpen Call #1 "Research" andOpen Call #2 "Protocol Suite & Software Ecosys-
tem Foundations"; it consolidates the results of the twenty projects funded and exe-
cuted betweenMarch 2021 and September 2022 and integrates themwithin a single
infrastructure design. Parts of this document will be provided to applicants as input to
applicants of ONTOCHAIN Open Call #3 ("Applications & Experimentation").

The framework specification defines the software components that will compose the
ONTOCHAIN ecosystem, the application programming interfaces (APIs) that will allow
these individual components to communicate, and the user-facing interfaces. that the
ecosystem will provide (graphical user interfaces and APIs).

6

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. 6

TABLE OF CONTENTS .. 7

LIST OF FIGURES.. 8

LIST OF TABLES.. 9

ABBREVIATIONS .. 10

1 INTRODUCTION.. 11

2 ONTOCHAIN ARCHITECTURE.. 12

2.1 ARCHITECTURE DESIGN.. 12

2.2 COMPONENTS DESCRIPTION.. 19

3 ONTOCHAIN GATEWAY API. 58

3.1 Service discovery . 58

3.2 Organization and user accounts . 59

3.3 Storage service results/output . 61

4 THE ONTOCHAIN PILOT NETWORK.. 64

4.1 Foundation of Pilot Network .. 64

4.2 Status of the ONTOCHAIN network .. 65

4.3 Developer’s Liabilities. 65

5 CONCLUSION .. 70

REFERENCES .. 71

7

LIST OF FIGURES

FIGURE 1: ONTOCHAIN ARCHITECTURE AND COMPONENTS DIAGRAM.. 13

8

LIST OF TABLES

TABLE 1: VALIDATOR NODES RELATED INFORMATION.. 66
TABLE 2: FULL NODES RELATED INFORMATION.. 67

9

ABBREVIATIONS

APIs Application Programming Interfaces

DID Decentralized IDentity

DLT Distributed Ledger Technology

ERC Ethereum Request for Comments

NGI Next Generation Internet

OC Open Call for participation

P2P Peer-to-Peer

PKI Public Key Infrastructure

SDK Software Development Kit

EVM Ethereum Virtual Machine

10

1 INTRODUCTION

This first version of the ONTOCHAIN framework specification is the combined result of
the initial architecturedesignedbeforeOpenCall 1 (OC1), andof revisionsmadeduring
the execution of the third party projects funded under OC1. This framework specifica-
tion is thus the result of the collaboration between the consortium, the funded third
parties and the Advisory Board. Then during the Open Call 2 (OC2), the OC2 partici-
pants developed protocol suite & software ecosystem foundations of the ONTOCHAIN
project. Themainobjective for formulating this document is toprovide commonguide-
lines and recommendations toparticipants ofOC3 regarding important design choices
that go beyond their own project.

The rest of this deliverable is organized as follows:

Chapter 2, provides the first version of the ONTOCHAIN architecture, as revised after
the execution of OC1; the architecture defines the high-level services and compo-
nents that will implement the ONTOCHAIN vision and describes the services that
were implemented by third parties during OC1;

Chapter 3, defines application programming interfaces for the ONTOCHAIN ecosys-
tem, i.e. the APIs that will be presented to application developers and users of
ONTOCHAIN services; these APIs also define primitives useful to developers of ON-
TOCHAIN (including participants funded through OC2), e.g. for integrating services
and for implementing interoperability between services;

Chapter 4 describes the planned and developed pilot deployment of the ON-
TOCHAIN ecosystem which has built on top of the iExec Ethereum sidechain and
on top of geo-distributed hardware provided and hosted by the consortium mem-
bers.

Chapter 5 provides concluding remarks for this deliverable.

11

2 ONTOCHAIN ARCHITECTURE

The ONTOCHAIN software ecosystem consists of a novel protocol suite grouped into
highlevel application protocols, such as data provenance, reputation models, decen-
tralised oracles, market mechanisms, ontology representation and management, pri-
vacy aware and secure data exchange, multi-source identity verification, value sharing
and incentives and similar, and core protocols that include smart contracts, authorisa-
tion, certification, event gateways, identitymanagement and identification, secure and
privacy aware decentralised storage, data semantics and semantic linking.

2.1 ARCHITECTURE DESIGN

For enabling scalability, openness and high performance, the consortium employs a
modular approach. The original layered approach introduced before OC1 has been
revised to take into account the progress made during the execution of OC1 funded
projects. The revised architecture is introduced earlier in D3.4 FRAMEWORK SPECIFI-
CATION [1] and depicted in Figure 1; threemodules are on the left side, and eachbuilds
on the functionalities offered by the lower layers:

Applications;

Ontologies;

Distributed Ledgers.

On the right hand side are cross-layer modules, which mainly focus on interfaces and
interoperability. The colour scheme shows at which stage of the project each module
is developed:

OC1 focused on building the foundations for the ONTOCHAIN ecosystem;

OC2 integrated the results of OC1 into a platform comprising building blocks for
developing ONTOCHAIN applications;

OC3 will develop said applications.

At the top layer lie different next-generation application solutions, such as trustwor-
thy web and social media, trustworthy crowd-sensing, trustworthy service orchestra-
tion, decentralised online social networks, which tackle today’s Internet problems that
can be built upon the use cases in Trustworthy Information Exchange and Trustwor-
thy and Transactional Content Handling. Each of the use cases is built upon combined
functionalities from the Application Protocols layer, such as Data Provenance, Repu-
tation Models, Decentralised Oracles, etc. The modules at the Application Protocols

12

FIGURE 1: ONTOCHAIN ARCHITECTURE AND COMPONENTS DIAGRAM AS REVISED
AFTER OPEN CALL 1.

layer themselves are built upon core Blockchain-based services at the Core Protocols
layer, such as Smart Contracts, Identity Management, Secure and Privacy-Aware De-
centralised Storage, Certification, Authorisation and Data Semantics. The Core Proto-
cols modules employ low-level Distributed-ledger functionality, i.e. Digital Currency,
Distributed Storage interfaces and cross-chain functionalities, which lie on combined
proprietary, corporate and public resources.

The Distributed ledger module will provide a distributed and decentralized execu-
tion environment for the whole ecosystem; the Ontologies module will provide novel,
trusted services for managing web ontologies in a fully trusted and secure fashion; the
Applications module will be the focus of OC3, although OC1 already produced valu-
able pilot use-cases. The Interoperability modules and protocols has multiple func-
tions; first, it will act as the backbone for interconnecting the other modules; second,
it provided the ONTOCHAIN Gateway API, i.e. the main entry point for application de-
velopers; last, it will provide essential services and building blocks to all of the modules
and to the applications, e.g. decentralised storage, identitymanagement and data cer-
tification.

2.1.1 Distributed Ledgers

The ONTOCHAIN software ecosystem will rely on several interconnected Blockchains
in order to ensure performance and scalability metrics that satisfy a business context.

13

The first benefit of this multi-chain environment is to better scale applications by host-
ing the transactions and data from different business domains in different chains. An
additional benefit is to isolate applications that may need it, in order to preserve the
confidentiality of transactions when necessary (e.g. in the context of private industrial
consortium). ONTOCHAIN will provide native interoperability solutions for exchanging
information and assets between the different chain (see 2.1.4).

The main ONTOCHAIN Blockchain will be based on Ethereum1, which is currently the
industry standard for Blockchain-based decentralised applications2. Ethereum also
features several initiatives to support cross chains operations (e.g. Polkadot3, Polygon4)
thatONTOCHAIN canmonitor and eventually integrate for this purpose. The initial pilot
deployment will rely on the iExec Bellecour network, which is an Ethereum sidechain
based on the POA Network5 stack (see Section 4).

In addition to Blockchains based on Ethereum and on the Ethereum Virtual Machine,
ONTOCHAIN necessarily offer some features that are not compatible with the EVM; At
this time, two services are in this situation, GraphChain which is entirely compatible
with Ethereum smart contracts but relies on amodified client (see 2.2.1) and Gimly ID,
which is built on top of the Oasis Protocol6 (see 2.2.4).

Digital currency tokenomics Beyond the current hype revolving around Bitcoin,
Ethereum and over 5,000 altcoins, the potential for social change of what is now
being called "Blockchain2.0" is appearingmore andmore clearly. For example, cryp-
tocurrencies are praised for allowing cheap and fastmoney transfer to the 1.7 billion
people who are excluded from the banking system around the world, or as a stable
alternative to devalued fiat currencies. One very interesting aspect for the Next Gen-
eration Internet is the possibility of programming complex self-executing transac-
tions in Smart Contracts. Integrated with ONTOCHAIN’s provenance and reputation
mechanisms, a crypto tokenwill guarantee a fair compensation to every contributor
who participates in the ecosystem.

Sidechains & Layer-2 technologies Blockchain offers a plethora of features, such as
traceability, transparency, pseudo-anonymity, democracy, automation, decentraliza-
tion and security. Despite these promising features the technical scalability of the
network is still a key barrier which can put a strain on the adoption process, espe-
cially for real business environments. The complexity and the specialization of all the
different real-world ONTOCHAIN applications will lead practitioners to use multiple
ledger technologies for implementing different solutions. This will enable higher
performance and scalability, while enabling different business logics, access meth-

1https://ethereum.org/fr/
2https://entethalliance.org/
3https://polkadot.network/
4https://polygon.technology/
5https://www.poa.network/
6https://oasisprotocol.org/

14

https://ethereum.org/fr/
https://entethalliance.org/
https://polkadot.network/
https://polygon.technology/
https://www.poa.network/
https://oasisprotocol.org/

ods and governance models that require specific chains. This component will build
the main ONTOCHAIN and associated clients based on Ethereum, which is a stable
andwell tested system for data transactions and has a cost-effective network for the
operation of its applications.

Decentralized oracles By essence, smart contracts must run entirely isolated and
cannot access data from the external world on their own. Oracles are software com-
ponents which primary purpose is to collect external data and input it to smart con-
tracts. Because oracles bring arbitrary data to the Blockchain they create a major
vulnerability, and the trustworthiness of the imported data is extremely difficult for
them to assess. This component will provide trustful and trustless oracle prototypes
that are capable of interacting with the ONTOCHAIN infrastructure and providing
necessary data for the operation of its applications.

Decentralized storage Various decentralised repositories, such as Peer-to-Peer and
Content Distribution Networks have existed for decades. Lately, the ENTICE7 project
developed a series of repositories for the storage of Virtual Machine and container
images, including their fragments and it was optimised for delivery upon request.
The interfaces used are S3 like8. In recent years, with the emergence of Blockchain,
wehavewitnessed anewwave of participatory storage repositories that canhelp ad-
dress the security and privacy needs, andmay help store practically any kind of data,
for example, services such as STORJ9 and Filecoin 10. This component will integrate
new storage services that will help store private data in encrypted and decentralised
ways, manage data replicas for reliability and Quality of Service, while balancing the
trade-offs with the storage costs.

2.1.2 Ontologies

Specific domain ontologies have been developed or reused by ONTOCHAIN projects.

Of these, theproject PROF4COMMERCEwas specifically focused todevelopontologies,
in this case for supporting e-commerce applications. More specifically, this project de-
veloped 3 domain ontologies, as extensions of well know ontologies, andmore specifi-
cally:

OC-Found, building on the ontology OASIS, for supporting the semantic descrip-
tion of the stakeholders of the ONTOCHAIN ecosystem, including supply chain of
resources, digital identities of agents, quality valuation processes;

7http://www.entice-project.eu/
8https://aws.amazon.com/fr/s3/
9https://www.storj.io/

10https://filecoin.io/

15

http://www.entice-project.eu/
https://aws.amazon.com/fr/s3/
https://www.storj.io/
https://filecoin.io/

OC-Commerce, building on the ontology GoodRelations, for supporting the seman-
tic description of offering, auctions and commercial activities;

OC-Ethereum, building on the ontology BLONDiE, for supporting the semantic de-
scription of Ethereum Blockchain, smart contracts and tokens.

The project CopyrigthLY reused the Copyright Ontology, which is a background of
the group deliverying this project. This ontology, available on https://rhizomik.net/
ontologies/copyrightonto. Models the fundamental building blocks of the copyright
domain, including rights, creations, and actions, are also available there.

The project KnowledgeX developed an ontology for matching data science problems
with skills of data scientist.

TheprojectGraphChaindevelopedWehavedeveloped theGraphmetadata ontology, a
lightweight ontology that can be used to represent and interchange provenance infor-
mation and othermetadata generated inside the Graphchain ecosystem. The ontology
is mainly intended for describing data in the default graph.

2.1.3 Applications

Applications will be the focus of ONTOCHAIN Open Call 3, which is already kick-off to
open on the month of October, 2022. At this time ONTOCHAIN features a few com-
plete applications, (e.g., KnowledgeX, BOWLER, CARECHAIN, PXC, etc.) have been de-
veloped.

2.1.4 Interoperability modules and protocols

Core protocols

Authorizations Blockchain has stimulated the idea of self-sovereign digital identity,
and few commercial services have already emerged11. Various Role-Based Access
Control (RBAC) systems have also existed in the course of the past decades. With
ONTOCHAIN one could easily see systems where a patient is self-identified on the
Blockchain, while a medical doctor gains access to the medical records based on
their role (e.g. surgeon, general practitioner).

Certification Certification refers to the confirmation of certain characteristics of an
object, person, or organization. For example, a government may decide to offer
certificates to cloud providers that have verified GDPR-compliant handling of pri-

11https://www.ibm.com/blogs/Blockchain/category/trusted-identity/self-sovereign-identity/

16

https://rhizomik.net/ontologies/copyrightonto
https://rhizomik.net/ontologies/copyrightonto
https://www.ibm.com/blogs/Blockchain/category/trusted-identity/self-sovereign-identity/

vate citizens’ data. In such cases, certificates can be issued on-chain, and can be
used as conditions for performing specific transactions, for example, using AI meth-
ods to analyse private data. The specific conditions can be implemented within a
Smart Contract to govern the GDPR-handling of private citizens’ data only on certi-
fied cloud providers.

Identity management Self-sovereign Digital Identity is a specific area of research
that is overreaching to be addressed solely by the present project. Nevertheless,
ONTOCHAIN technologies and solutions can be used to address parts of the digi-
tal identity puzzle. There are two conflicting requirements that drive this develop-
ment. First is the ability to identify oneself in specific interactions, such as withdraw-
ing money in a bank, and another is to still preserve one’s privacy, for example of
the health data or the web browsing or buyer’s habits. This is a feasible endeavour.
However, it is necessary to invest more in technologies like ONTOCHAIN to make it
happen.

Decentralized storage Various decentralised repositories, such as Peer-to-Peer and
Content Distribution Networks have existed for decades. In recent years, with the
emergence of Blockchain, we have witnessed a new wave of participatory storage
repositories that canhelp address the security andprivacyneeds, andmayhelp store
practically any kind of data in virtualized block devices. In the near future, one could
imagine new storage services that can help store private data in encrypted and de-
centralised ways, that can help manage data replicas for reliability and Quality of
Service, while balancing the trade-offs with the storage costs.

Crosschain transactions A Crosschain transaction module facilitates the interoper-
ability between two relatively independent Blockchains. In other words, this mod-
ule will enable the functionalities for the Blockchains to speak to one another
Blockchain. Crosschain implementation is mainly represented by asset swap and
asset transfer, which is both an essential part of the Blockchain world. With the help
of this module, the limitations of a single chain can be avoided.

ONTOCHAIN API Gateway This module will support connections between the ON-
TOCHAIN Blockchain and the outside world, including other Blockchains. Part of its
duty will be to help programmers in the upper layers make trade-offs about how
much data is stored on-chain, by supporting pointers to offchain decentralized stor-
age, such as IPFS. The module will provide several low-level Application Program-
ming Interfaces (APIs) in the form of Smart Contracts, as well as several higher-level
wrappers for at least three programming languages that are commonly used by de-
velopers e.g. JavaScript, Java and Python. The interfaces will be generic and exten-
sible in order to allow connections with different ledger technologies in the future,
while only external Ethereum-based chains will be supported during the course of
the project because of its important community of adopters and developers and
because its ecosystem already containsmost of the software components that sub-

17

projects will require (e.g. off-chain Computing, Decentralized Oracles). However,
sub- grantees will be discouraged from producing designs relying on concepts and
optimisations that are specific to any particular Blockchain.

Application protocols

Reputation models This module will provide the functionality of building different
decentralized reputationmodels over theBlockchain infrastructure. Thebasic build-
ing blocks of a reputation system are an approach for casting assessments/votes for
a particular subject (person/data/fact), an approach for recording the history of votes
per subject and an approach for summarizing votes into a single reputation metric
per subject. One important problem with reputation systems is weak identities, re-
ferred to as "cheap pseudonyms", throughwhichmultiple attacks can be employed,
such as ballot stuffing, bad naming, negative discrimination, sybil attacks, reputa-
tion whitewashing, reputation milking and more. Existing solutions include repu-
tation cold start (which introduces a new set of problems) and making pseudonym
change more costly. Emerging decentralized reputation mechanisms built upon
the Blockchain will enable stronger user identities without sacrificing anonymity.
Different reputationmodels can be defined to assess different aspects, such as data
source trustworthiness, data credibility, service trustworthiness, etc. This module is
built upon Identity Verification mechanisms.

Secure Data Exchange Secure data exchange comprises the functionality of ex-
changing data among distributed parties, while verifying the ownership of the data
and access rights, authenticity of transacted parties, the integrity of the data ex-
changed and the confidentiality of the data through Blockchain underlying mech-
anisms. Most often, off-chain data will be exchanged in data transactions, while
on-chain data will store public cryptographic keys and access control lists based on
which elevated data access to different portions of data is authorized for specific
transacted parties.

Multi-source Identity Verification This module seeks to register and verify individ-
ual digital identities of physical objects (in addition, abstract objects, physical and
abstract persons) via trusted data frommultiple sources. Attributes represent a fun-
damental part of any ontological concept. In particular, various AI methods can be
introduced to operate on sensing data (IoT based, sensors, cameras and similar) so
that an assertion can be made whether an individual belongs to a specific ontolog-
ical concept (e.g. car, chair, container image, the person Elisabeth, and similar).

Semantic Match-Making This module will find correlations between any goods or
services that can be described with an ontological representation. Semantically re-
lated entities of ontologies can be used for different tasks such as ontologymerging,
query answering, data translation, etc. Ontologymatching is a requirement for find-
ing compatible offer and demand (buy and sell orders) in semantic-based market-
places. To guarantee the fairness of the transactions in themarketplace, thematch-

18

ing process should be fair to every party, e.g. preventing exclusion, censorship, price
manipulation and fraud.

Decentralized Autonomous Organization Based on the encoding rules, the decen-
tralized autonomous organization (DAO) module can run a Blockchain protocol en-
tirely and autonomously with the help of smart contracts. Thus, this module cir-
cumvents the need for human intervention or centralized coordination and helps to
build a trustless system.

DataProvenanceAPIs Thismodulewill provide applicationprogramming interfaces
for querying and presenting provenance information from ONTOCHAIN about on-
Chain and off-Chain data (pointers to data stored outside of ONTOCHAIN). Prove-
nance information will include the complete trail of transactions that resulted in a
record, including links to the programs that were run (e.g. address of smart con-
tracts, signature of AI models when available), to the input data that was processed
and to the contributors who ran the programs or provided original information.

2.2 COMPONENTS DESCRIPTION

The system architecture described in the previous section will be realised by integrat-
ing software components developed by successful applicants to theONTOCHAIN open
calls for contribution. The following seven projects have already been selected and de-
veloped by third parties under ONTOCHAIN OC1 and will be integrated into the final
ONTOCHAIN ecosystem; this section briefly introduces each of these components and
describes the interfaces they will provide for integrating with the other ONTOCHAIN
components.

In particular, these interfaces should be read as specifications for Topic A1 "Service In-
tegration (Gateway APIs) for ONTOCHAIN applications" of ONTOCHAIN OC3.

2.2.1 GraphChain: a framework for on-chain data management for
ONTOCHAIN

Description GraphChain is a framework for on-chain data management for ON-
TOCHAIN which implements decentralised On-chain graph management technolo-
gies, including the ability to perform usual graph operations. GraphChain pro-
poses a radically different approach: instead of encapsulating the semantic data into
Blockchain blocks, they propose to design and implement theBlockchainmechanisms
on top of semantic data. The GraphChain solution provides different functionalities
such as:

19

Hashing of subgraphs for the on-chain graph structures;

Procedural smart contracts with access to the on-chain semantic data;

Identification, authorisation and data provenance for the on-chain data;

Sharding mechanisms and strategies.

Thewhole idea of GraphChain is adding a new level of trustwithout sacrificing availabil-
ity, query ability and performance of graph databases so the solution can be integrated
in any software ecosystem that uses traditional LPG databases.

ApplicationProgramming Interfaces In theGraphChain ecosystem, the core element
is an Ontonode, which is a single OntoSidechain node. The general idea of Ontonode
operation is similar to every Blockchain network. The Blockchain nodes process trans-
actions and achieve consensus over data that represent them. Ontonode is based on
the combination of Ethereum and RDF-star triplestores. The modification strategy for
the Ethereum client node has been thoroughly presented in [2].

Module Ontopod is one of the most important sub-elements of Ontonode. It is
an RDF-star compliant graph database that stores all named graphs protected and
distributed by Blockchain network. The services offer by the Ontopod are exposed
by the REST APIs. Below the detailed descriptions of each REST API calls has been
presented:

/ontonode/deploy?contract=typePOST Deploy the contracts which are essential for
proper work of Ontonode. Takes the type of contract as an argument. If the oper-
ation is successful then it returns the value "OK" and HTTP 200. Otherwise it will
returns "error" and HTTP code 400.

/ontonode/info?size=graph_countGET Getmetadata about thegraphswhich are up-
loded to Graphchain. This call takes the number of graph as the argument and re-
turns the JSON with graph metadata.

/nodes/get?size=countGET Get the information about Ontonodes. Takes the num-
ber of desired Ontonodes as the argument and returns HTTP code 200 in case of
success. Otherwise, it returns HTTP 400 for erroneous call or HTTP 404 if the infor-
mation of the Ontonode is not found.

/nodes/adding?nodeId=idPOST Add a new Ontonode. The function takes the node
ID as the argument and returns HTTP code 200 if successful. Otherwise, it will re-
turn HTTP code 400 for erroneous call or HTTP 404 if the information of the Onton-
ode is not found.

/nodes/update?nodeId=idPOST Modify theOntonode. Similarly to theprevious func-
tion, it takes a node ID as the argument and returns HTTP code 200 for success.

20

Otherwise, it returns HTTP 400 for erroneous call or HTTP 404 if the information of
the Ontonode is not found.

ModuleOntoshell is another important sub-element ofOntonode. It is a set of end-
points and interfaces. It is a crucial component because all Blockchain interactions,
which are not internal, work on this layer. Themost standardway of interactionwith
Ontonode is through REST API (Graph update, retrieval, storing and deleting).

/rdf-graph-store?graph=graph_uri&user=user_addrPUT
/rdf-graph-store?graph=graph_uri&user=user_addrPOST Both calls uploadRDFgraph

from the request body to GraphChain. These calls take the URI of a graph and the
Ethereumaddress of a user as arguments. Successful executionof these calls return
"OK" and HTTP code 200. Otherwise, it returns HTTP code 400 for erroneous call or
HTTP 415 for wrong serialization.

/rdf-graph-store?graph=graph_uriGET Return the latest version of a RDFgraph. The
function takes theURI of the target graphas the argument. For unsuccessful search
operation, the function returns HTTP error code 404.

/rdf-graph-store?graph=graph_uriDELETE The delete operation does not remove
anything, instead it adds an empty graph to the Triplestore and points to it as the
latest version. The argument is the URI of the graph to remove and returns HTTP
code 200 for successful call. Otherwise, it returns HTTP code 400 for erroneous call
or HTTP 404 if the information of the graph is not found.

/rdf-graph-store?graph=graph_uriHEAD Same as GET but returns an empty re-
sponse body. Similar to ASK SPARQL query. Takes the URI of the retrieved graph
as the argument and returns HTTP code 200 for successful call. Otherwise, returns
HTTP400 for erroneous call orHTTP404 if the informationof thegraph is not found.

2.2.2 CopyrightLY: Decentralised Copyright Management for Social
Media

Description CopyrightLY is an application that helps managing ownership and rights
in the ONTOCHAIN ecosystem. From claiming authorship of content or data, to linking
these claims to evidence off-chain or associating reuse terms that once agreed set the
reuse conditions among the involved parties.

CopyrightLY proposes a system capable of rooting on-chain copyright transactions, es-
pecially NFTs, on copyright claims that can by tied to evidence and validated on court.
These set of evidence, together with the opportunity to make complaints and use in-
centives to curate them, makes it possible to build a scalable and community driven

21

content ownership layer.

The central part of the CopyrightLY’s architecture is on-chain and based on a set of
smart contracts, which take care of registering Manifestations (i.e. authorship claims),
Complaints (todenounceauthorship claimspotentially fraudulent) andReuses (used to
attach reuse terms to a manifestation, including the initial offer, the negotiation steps
and the final reuse agreement, if reached).

Application Programming Interfaces To facilitate interoperability and dealing with a
complex domain as copyright management, CopyrightLY is based on the use of se-
mantic technologies and the formal conceptualisations provided by the Copyright On-
tology.

CopyrightLY’s functionality is made available through differentmechanisms. If the aim
is to read the state regarding authorship claims (manifestations), evidence accumu-
lated or existing complaints, it is available mainly through a GraphQL API provided us-
ing The Graph:

Manifestation (authorship claim) details;

Manifestations (authorship claims) list;

Upload Evidence details;

Upload Evidence list.

On the other hand, it is also possible to access andmodify CopyrightLY’s state as stored
in theBlockchain, interacting directlywith the corresponding smart contracts. Notably,
the services will be exposed by the REST API calls. Detailed of those calls are presented
below:

/api.studio.thegraph.com/query/1303/copyrightly/0.0.9POST Is sending a GraphQL
query to the endpoint. TakingGraphQLquery as the argument and returning the result
in JSON.

More details can be found in [3].

2.2.3 HIBI: Human Identity Blockchain Initiative

Description HIBI encompasses scalable Blockchain, decentralised legal reputation
and identity systems and interoperable semantic web technologies. HIBI is provided
to developers as a modular SDK for adding specific features to an application. All of
the features are based on the eIDAS standard for qualified electronic signatures and
require the NFC scans of a legal EU identification document. With HIBI, developers

22

can:

Support eID-based authentication in their applications;

Let users sign transactions and documents using their physical eID card;

Link the legal identity of a user to a Blockchain-based public key;

Perform key backup and recovery using a legal ID document.

HIBI provides the user with the power and sovereignty of their keys, identifiers, and
verifiable credentials. Therefore, it contradicts existing identity management systems
that are usually based on centralised data silos managed by identity providers.

Application Programming Interfaces The SDK allows the client application to com-
municate with the HIBI services over remote API calls. For instance, the APIs let a user
request their secrets to be backed up, or the DID on which some credential should get
issued. The two SDK modules are EVERKEY and EVERID; the mothodes they provide
to client applications for consuming HIBI services are listed hereafter.

Module EVERKEY Decentralized, Non-custodial Backup and RecoveryMechanism
that is using eIDAS-compliant eIDs that can provide a pseudonym.

store(key, userIdentifier, keyIdentifier) Get a secret backed up using the HIBI
SDK. There is no need to expose further APIs, as the rest of the system is provided
by the eID infrastructure where the HIBI SDK itself receives data autonomously and
the decentralized storage solution to post secrets.
recover(userIdentifier, keyIdentifier) Get a secret that came from the decentral-
ized storage grid and was reassembled within the HIBI SDK.
retrieveIdentifier() Perform the eID Authentication. The user needs to scan their
ID with an NFC-enabled device. After entering the correct PIN, the eID is unlocked
and can be used for EVERKEY and EVERID.

Module EVERID With this REST API, it is possible to call the EverID service. The
service allows for deriving a Verifiable Credential and get it issued, as well as get the
Qualified Electronic Signature (QES) from the issuer, and verify the credential.

/everkey.id/v1/getVCPOST Return a Verifiable Credential that includes the pro-
vided identity attributes. The argument is the name of the user and returning veri-
fiable Credential in JSON-LD form.

/everkey.id/v1/verifyVCPOST Verify the Verifiable Credential. Takes the verifiable
credential as argument and returns a boolean.

23

/everkey.id/v1/certGET Obtain the X.509 Issuer certificate to verify the VC of the
user.

/everkey.id/v1/getTcTokenURLGET Obtain the endpoint to perform the eID authen-
tication.

More details can be found in [4].

2.2.4 Gimly ID: an SSI application suite

Description Gimly ID is a fully self-sovereign identity solution that brings trust and us-
ability to users without compromising security and privacy of the ecosystem and its
members. Gimly ID centers around themobile application, which offers a passwordless
single-sign on experience and selective disclosure of data by leveraging decentralised
identifiers (DIDs) and Verifiable Credentials (VCs) and a sovereign data vault. The Gimly
IDmobile app can be used as a standalone solution, aiming for full interoperability with
other SSI conformant solutions.

Application Programming Interfaces Gimly ID also includes a range of web portals
and developer tools. These allow for advanced data management, simplified deploy-
ment of the SSO and SSI functionalities in existing systems, the creation and manage-
ment of DIDs and VCs, and the governance and analytics of deployed ecosystems.

The complete software suite consists of the following React native mobile application
and of several web applications:

1. Gimly ID mobile App: authentication and SSI data vault. Used for password-less
login, management of credentials and sovereign data, managing data access per-
missions.

2. SSO login button: sed to enable SSO with the Gimly ID app into web applications
and web portals.

3. Sovereign MyData web portal: advanced sovereign data management.

4. Developers web portal: allows developers, organisations, companies to implement
the password-less SSO flow with the Gimly ID app.

5. Organisations identity admin portal: managing DIDs and VCs, including the cre-
ation, issuing and revocation of credentials.

6. Ecosystem governance portal: allows for defining policies and rules for identities,
verifications.

More precisely, three new module has been introduced in addition with the previous

24

modules. In this section we are going to describe the API calls for those three new
modules.

Module DID Auth SIOP SIOP v2 is an extension of OpenID Connect to allow End-
users to act as OpenID Providers (OPs) themselves. Using Self-Issued OPs, End-
users can authenticate themselves and present claims directly to the Relying Par-
ties (RPs), typically awebapp, without relying on a third-party Identity Provider. This
makes the solution fully self sovereign, as it does not rely on any third parties and
strictly happens peer 2 peer, but still uses the OpenID Connect protocol. Below, all
the methods related to this module has been thoroughly discussed.

createURI Create a signed URL encoded URI with a signed SIOP authentication re-
quest. Taking SIOP.AuthenticationRequestOpts as argument and returning promise
<SIOP.AuthenticationRequestURI>.
verifyJWT Verify a SIOP Authentication Request JWT. Throws an error if the verifi-
cation fails. Returns the verified JWT and metadata if the verification succeeds.
createJWTFromRequestJWT Creates an Authentication Response object from the OP
side, using the Authentication Request of the RP and its verification as input to-
gether with settings from the OP. The Authentication Response contains the ID
token as well as optional Verifiable Presentations conforming to the Submission
Requirements sent by the RP.
verifyJWT Verifies theOPsAuthenticationResponse JWTon theRP side as received
from the OP/client. Throws an error if the token is invalid, otherwise returns the
Verified JWT.
resolver.resolve Resolves the DID to a DID document using the DID method pro-
vided in didUrl and using DIFs did-resolver and Sphereons Universal registrar and
resolver client.
getResolver The DidResolution file exposes 2 functions that help with the resolu-
tion as well.
resolveDidDocument The DidResolution file exposes 2 functions that help with the
resolution as well.
createDidJWT Creates a signed JWT given a DID which becomes the issuer, a signer
function, and a payload over which the signature is created.
verifyDidJWT Verifies the given JWT. If the JWT is valid, the promise returns an ob-
ject including the JWT, the payload of the JWT, and theDIDDocument of the issuer
of the JWT, using the resolver mentioned earlier. The checks performed include
general JWT decoding, DID resolution and Proof purposes. Proof purposes allows
restriction of verification methods to the ones specifically listed, otherwise the ’au-
thentication’ verification method of the resolved DID document will be used.

25

Module Gimly ID Mobile SDK For the most up-to-date information, it is rec-
ommended to read the documentation: https://github.com/Gimly-Blockchain/
gimly-id-app-sdk.

createEncryptedWallet This API creates a wallet. Taking pin as the argument and
returning a string value.
createDid It creates aDID and taking identityData andAuthority as arguments and
returning IdentityData.
getUserDid This call returning the value of IdentityData and resolves a DID.

updateDID It updates the DID document by taking arguments as IdentityData, per-
mission info, parental info of the corresponding DID and Authority related info.
createCredential Create a credential.
verifyCredential Verify the credential.

createPresentation Create a presentation.
signPresentation Sign a presentation.

verifyPresentation Verify a presentation.

verifyUnsignedPresentation Verify an unsigned presentation.

Module Universal DID resolver/registrar client This is another module related
with the SDK. For more details it is recommended to read the online documen-
tation: https://github.com/Sphereon-Opensource/did-uni-client.

Registrar.create Create a DID and obtain its JSON representation as a string.

Registrar.update Update a DID and obtain its JSON representation as a string.

Registrar.deactivate Deactivate a DID and obtain its JSON representation as a
string.
Resolver.resolve Resolve a DID document.

Notably, for this project no services have been exposed through REST API calls as it is
aimed at Peer-to-Peer communication. More details are provided in [5].

2.2.5 Reputable: a Provenance-aware Decentralised Reputation Sys-
tem for Blockchain-based Ecosystems

Description Reputable delivers a cross-platform privacy-aware reputation system
which leverages Blockchain technology to achieve decentralised, verifiable calculation

26

https://github.com/Gimly-Blockchain/gimly-id-app-sdk
https://github.com/Gimly-Blockchain/gimly-id-app-sdk
https://github.com/Sphereon-Opensource/did-uni-client

of reputation scores. Further it enables interactionwith endusers and systems through
a secure, reputation analytics dashboard to facilitate user verification as seamless inte-
gration with other systems and services.

Within Reputable, the reputation data consists of two different types. Firstly, it is the in-
dividual user feedback i.e. the feedback provided by the users when contacted to share
their experiences with a service/seller/marketplace. Secondly, it is the aggregate repu-
tation score which is calculated using the individual user feedback. As these two types
of data are linked with each other, the linkage is preserved and utilised it to achieve
verifiable reputation scores.

Application Programming Interfaces Reputable provides three different interfaces:

Query reputation score for a seller

Query historical reputation score for a seller

Verify reputation calculation for a user

As the reputation modelling system is expected to interact with external services and
users in an off-chain arrangement, Reputable envisions leveraging decentralised ora-
cles to integrate reputation data with the on-chain provenance mechanism. Notably,
the developer did not build any APIs for the SDKmodule. They have exposed their ser-
vices through REST APIs. An example of these services has presented below. For more
details, it is recommended to follow [6].

Module Aggregator This module is responsible to calculate aggregate reputation
score using the individual user feedback. The aggregator is a crucial component of
the REPUTABLE system.

/localhost:3000/reputationGET Aggregate the reputation score for a seller. Takes
the identifier of the seller as the argument and returns the seller’s reputation score.

/localhost:3000/reputation_scorePOST Post a seller’s aggregate score using seller
id and user scores. Taking sellerID and individual reputation scores, as arguments.

/localhost:3000/verify_reputationGET Verify the reputation of a service/seller. Re-
turns the receipt highlighting on-chain record/hash of reputation feedback.

/localhost:3000/individual_scoreGET Get the individual scoreof abuyer/consumer.

/localhost:3000/individual_scoresGET Get the individual scores relating to a
buyer’s aggregated score and returning the individual scores of buyers who rated
the specified seller.

/localhost:3000/token_usedGET Query the aggregator to find out if a tokenhas pre-
viously been used. Takes the token as an argument and returns a Boolean value.

27

2.2.6 KnowledgeX: Trusted data-driven knowledge extraction

Description KnowledgeX is a trustworthy marketplace for data science. This means
data owners can outsource data science tasks to independent contractorswithout risk-
ing data misuse. Independent data scientists can bid on proposed tasks without get-
ting prior access to confidential data.

Currently data markets are hampered by confidentiality requirements due to compet-
itive (e.g., cost data) or regulatory (e.g., personal data) considerations. Data scientists
have to be employed in-house or are contractually restricted by non-disclosure stipu-
lations, which tend to be ambiguous and costly to enforce.

KnowledgeX aims to solve this problem via a process where data privacy, and contract
fulfillment are technologically guaranteed, so the need for non-disclosure agreements
does not arise. Therefore, KnowledgeX leverages the following technologies:

Emerging technologies:

Blockchain and Smart Contracts

Decentralised Cloud Computing

Trusted Execution Environments

Established technologies:

Web Applications

Public Key Infrastructure

Microservice Backend

Application Programming Interfaces According to theONTOCHAINproject proposal,
different higher-level applications and interfaces will be built through several open
calls. These applications and interfaces can leverage KnowledgeX’ REST API for identity
management,microservices and interface to on-chain interactions. The corresponding
details of the REST APIs for each individual services are presented in [7].

Module 1 (USER DETAILS SERVICE) Rest API of the user details service is used
by frontend user interface to store personal information of the user. The API allows
to modify information such as address, billing data or user description. This service
stores users IDs sharedbetween the services andallow todetect user Type to render
the corresponding views.

28

Module 2 (EXECUTION SERVICE) Execution service rest API is used by frontend
user interface to trigger and manage execution/exploration jobs, datasets, pro-
grams aswell as blockchian orders or execution results. The BlockchainMiddleware
use this API to persist the execution data gathered from iExec.

Module 3 (GIG SERVICE) Gig Service API is used by User service to persist new
users and by frontend application to manage gigs and offers.

Module 4 (BLOCKCHAIN MIDDLEWARE) For this service, no external integration
is allowed. Some examples of API calls for exposing this services are as follows:

/<base_uri>/blockchain-middleware/iexec/deal/id/resultsGET Taking id of execution
job as argument and returning execution results.

/<base_uri>/blockchain-middleware/iexec/executionJobPOST Taking the whole JSON
containing the task execution details and stores execution job details in iExec and
starts execution.

/<base_uri>/blockchain-middleware/contractsPOST This REST call stores contract in
Blockchain.

2.2.7 POC4COMMERCE: Making ONTOCHAIN practical for eCom-
merce

Description POC4COMMERCE innovates the ontological representation of
Blockchain-oriented digital commerce by integrating and extending the most
representative ontologies for modelling, participants, in particular commercial actors,
offers, products, and tokens emitted on the Ethereum Blockchain as digital represen-
tation of exchanged assets: providing a semantic descriptions of smart contracts and
related transactions, in particular of smart contracts related with tokens trading and
associated with commercial means.

POC4COMMERCE reuses and extends themost suitable and relevant ontologies in the
domain, namely, OASIS for the representation of commercial participants and smart
contracts, GoodRelations for representing commercial offers, andBLONDiE for describ-
ing Ethereum essential elements: all these ontologies are conjoined and extended to
also cover the gap missing from the literature on the representation of digital tokens,
smart contracts, digital identities, valuation mechanisms, and auctions.

Application Programming Interfaces POC4COMMERCE delivers a set of three mod-
ular ontologies describing each semantic compartment of eCommerce, from partici-
pants, assets, and offerings, to supply chains, smart contracts, and digital tokens. The

29

ontological stack is released together with the SPARQL queries implementing the de-
fined competency questions that enable users and developers to meaningfully probe
the knowledge bases they contribute to construct. Also, it delivers an API library con-
sisting of two main modules: OC-Generator, in short OCGEN, providing basic APIs for
generating agent ontological rep- resentations in the mentalistic notion of agent be-
haviors fashion, adopted by the foundational ontology OC-Found. The second one is
OC-Commerce Search Engine, in short OCCSE, providing APIs that realize the core of
a semantic search engine and reasoning system for querying the ONTOCHAIN knowl-
edge bases.

The modules OCGEN and OCCSE have been implemented in Python, version 3.7.
Specifically, OCGEN adopts the RDFLib12 version 5 API library13 to generate RDF frag-
ments, whereasOCCSEadopts theAPI libraryOWLReady214 version0.34 to realize the
query engine. Whereas RDFLib provides low-level APIs for generating RDF triples in an
extremely efficient way, OWLReady 2 provides an higher level interface for integrat-
ing OWL reasoners and performing SPARQL queries compliant with the latter version
1.1.

ModuleOCGEN TheOCGENmain object can be instantiated first by creating three
RDFLib ontology objects, one for the ontology hosting the agent behaviors, one for
the ontology hosting the agent templates, one for the ontology hosting data, then
by calling the constructor of the class OCGEN. Themodule will store RDF graphs in
the correct ontology depending on the type of operation required. It is also possible
to create or loadone single ontology for storingbothbehaviors, templates, anddata.
The OCGENmodule provides several methods to deal with semantic web agents in
the OASIS ontology fashion:

createAgentTemplate() is a void method creating an agent template given agent-
TemplateName as input parameter, namely a string representing the agent tem-
plate name.
createAgentBehaviorTemplate() is a void method creating a behavior template to be
associated with an agent template.
connectAgentTemplateToBehavior() is a void method associating a behavior template
to an agent template.
createAgent() is a void method creating a real agent where MyAgent is a string
representing the agent name.
createAgentBehavior() is a void method creating a concrete behavior to be associ-
ated with a concrete agent.

12https://pypi.org/pro ject/rdflib/5.0.0/
13RDFLib version 6 has currently a bug preventing theOCGENprototype from loading remote ontologies.
14https://pypi.org/pro ject/Owlready2/

30

connectAgentToBehavior() is a voidmethod associating a concrete behavior to a con-
crete agent.
createAgentAction() is a void method creating an agent action that is associated
with an agent behavior.

Module OCCSE Before instantiating the OCCSE, a repository manager and a rea-
soner interface are required. To create a repository manager it is sufficient to create
an object of type RepositoryManager, passing a list of IRIs representing the reposi-
tories that will be loaded into the OCCS triple store.

RepositoryManager() returns the object RepositoryManager, where [repository1,
repository2, ...] is a list of IRIs representing the repository to load.
ReasonerInterface() returns the ReasonerInterface, where reasonerName is either
pellet or hermit values.
OCCSE() instantiates the OCCSEmodule, where repos- itoryManager and reasoner-
Interface are the repository manager and the reasoner interface, respectively, as
created before.

The details of other methods are describe in [8]. Notably, for this project no REST ser-
vices are included in current implementation.

2.2.8 ONTOSPACE

Description Ontospace’s value proposition contains the innovative use of RDF graphs
with Blockchain to provide trusted environment for improved performance of struc-
tural data storage with the use of the graphs. It also reiterates the innovative concept
of Ontospace ecosystem, that shall be thought of as a multichain network of networks
based on Blockchain Layer-2 principles. The construction of Ontospace has direct ben-
efits forONTOCHAIN large scalepilot, because it provides aworkingecosystem inwhich
various networks can be launched and coexist under the fundamental principles of the
construction of Layer2 networks. The project comprises of four different programmod-
ules. Brief description of those modules are given below:

Module Blockchain developed on the Ethereum network. Notably, the project
deployed the hyperledger Besu Ethereum client which allows the direct access to
graph database.

31

Module Ontoshell is a collection of bunch of REST APIs. Importantly, these REST
API services are the main gateway for interacting with Graphchain. This module is
also responsible for synchronization between deployed Ontonodes.

Module Ontopod is the main storage component of the Graphchain. This module
has been developed based on the Blazegraph triplestore database.

Module VCFIH module is responsible for implementing Vicious Circle Free Inter-
woven Hashing algorithm.

Application Programming Interfaces No SDK has been implemented for this project,
therefore no APIs have been defined for accessing the SDK. However, for accessing the
services, a few REST APIs are developed. Brief description of them are given in the
follows:

/rdf-graph-store?graph=graph_uri&user=user_addrPOST takes arguments asURI of graph
to be stored on Graphchain and Ethereum address of user for uploading a graph. For
the successful operation, this API helps to upload the RDF graph from the request body
to Graphchain.

/rdf-graph-store?graph=graph_uri&user=user_addrPUT takes arguments as URI of graph
to be stored on Graphchain and Ethereum address of user for uploading a graph. For
the successful operation, this API helps to modify and upload the RDF graph from the
request body to Graphchain.

/rdf-graph-store?graph=graph_uriGET takes URI of graph as argument whichwould be
retrived from Graphchain and returns the latest version of an RDF graph.

/rdf-graph-store?graph=graph_uriDELETE takesURI of graphas argumentwhichwould
be removed from Graphchain.

/rdf-graph-store?graph=graph_uriHEAD takes URI of graph to be retrieved from
Graphchain. Similar as GET operation but without content in response body. Same
to ASK SPARQL query.

/deploy?contract=typePOST takes the contract info which to be deployed to the
Blockchain, as argument. Helps to deploy contracts needed for proper work of Onton-
ode.

/info?size=graph_countGET takes number of graph records to be returned as ar-
gument and returns the JSON with graph metadata which has to be uploaded to
Graphchain.

32

/nodes/get?size=countGET takes number of information (ontonodes) as argument for
displaying information about ontonodes.

/nodes/adding?nodeId=idPOST takes nodeid as argument and it helps to add the new
ontonode.

/nodes/update?nodeId=idPOST takes nodeid for modifying the ontonode.

2.2.9 ADOS

Description ADOS (AirTrace Decentralized Oracle System) originally stems from Air-
Trace platform, developed by Cubic Fort Consultores during 2021 and now available as
a closed beta for our early clients. As was briefly introduced in the Executive Summary,
and also detailed in later sections, AirTrace is a platform that allows, both visually aswell
as programmatically to quickly and easily deploy IoT networks supporting Blockchain.
Users (IoT system integrators and IoT SaaS platforms) simply choose the IoT devices to
deploy among the growing database of IoT System Integrators, and after a few con-
figuration steps, the resulting interfaces (RestFUL API, MQTT, etc.) are generated, so
that integrators can easily support them in their IoT projects. Since data injected to
the Blockchain comes from IoT devices measuring physical magnitudes (temperature,
air quality, etc.) data can potentially be subject to different attacks that may corrupt
their integrity. The real utility of ADOS in the platform AirTrace (as well as other po-
tential platforms that in the future might make use of ADOS for other non-necessarily
blockchain-related anomaly detection schemes) is that it helps potential audits later
to verify the reliability of data when already stored in the Blockchain. This increases
transparency of data and improves the reliability of Blockchain and IoT systems by im-
proving the core element: reliability of data and its credibility. ADOS helps tomaximize
data reliability by proving that anomaly detection algorithms canbeused in distributed
oracle systems in order to have an extra layer that can convey important information
to enhance data credibility before injecting into the Blockchain. In fact, this approach
based on Graph Neural Networks, for that it is possible to embed information not only
about given sensors but also from external oracles (out of the IoT network itself) that
can play an important role when spotting anomalies thanks to inherent correlations.
Among other advantages, this system can be pretty fast in comparison with other ap-
proaches like the ones shown before where complex schemes (reputation, voting, etc.)
are associated to longer computing times and higher delays.

Application Program Interfaces
Module ADOS is wrapped by AirTrace main Restful API infrastructure. It contains
threemain HTTPmethods that are used to send IoT readings to ADOS. All readings
will be associated to a specific link that will accumulate all readings before sending

33

https://airtrace.io
https://airtrace.io

them to the blockchain along with the computed DQF (Data Quality Factor).
/api.airtrace.io/v1/ados/<link>POST takes specific link where IoT data is submit-

ted. Specifically, this API reads body from the POST request and its submission is
cumulated during the commitment interval, where Id_transaction corresponds to
the current interval slot.

/api.airtrace.io/v1/ados/<link>/<id_transaction>GET takes specific link from
where to retrieve data and associated transaction id for the current reading. In
returns the it gives the DQF associated to each sensor reading cumulated in the
current window.

/api.airtrace.io/v1/ados/<link>GET takes specific link where IoT data is retrieved.
Finally it returns the URI, which gives all available id_transaction completed or on-
going so far associated to link, which can be reviewed later.

2.2.10 CARECHAIN

Description CARECHAIN, offer a platform where companies can provides services of
insurance contracting, advice and risk management. CARECHAIN addresses the fol-
lowing challenges: 1) these insurance contracting companies, to enhance services, re-
ducemanaging costs and provide secure onlinemechanisms, and 2) competitor com-
panies seeking comparative advantages to enter this market, within the scope of ON-
TOCHAIN ecosystem. The idea behindCARECHAINproject is design and implement an
environment for the execution of smart contracts for parametricmicroinsurance based
on the distributed ledger, to guarantee users the application of coverage when meet-
ing contract conditions, in search for newmarket niches and allowing the revitalization
of the economy caused by COVID19 pandemic. Microinsurances and similar financial
operations are one of the most security and trust demanding sections for online oper-
ations, creating a platform for microinsurance contracting and managing automated
service, with security, traceability and trust using DLT technologies is expected to have
a great impact.

Application Program Interfaces No SDK has been implemented, therefore no APIs
have been developed relatedwith the SDK. However, a vast number of end-points have
been developed to interact with backend blockchain services, smart contracts, oracles,
access management modules, sensors.

Module APIs for Blockchain services A set of endpoints has been developed to
interact both in the backend and directly with the deployed ERC735 and ERC930
Smart Contracts. In the following image you can see all the endpoints designated
for this function. Themethod root/get returns the address of the owner of the Smart

34

Contract. Through the onlyRoot modifier defined in the smart contract, access to
add or remove new administrators is restricted.

/api/v1/blockchain/admin/getGET This API call return if an account is admin.

/api/v1/blockchain/root/transferPOST This API transfers the ownership of the con-
tract.

/api/v1/blockchain/claim/changeStatusPOST

/api/v1/blockchain/claim/getGET This API call returns the data of a claim, either
generic or specific.

/api/v1/blockchain/claim/grantAllowanceSignerPOST This API call gives permissions
to a user to sign a contract.

/api/v1/blockchain/claim/isAllowanceSingerGET This API call returns if an account
is allowanceSigner.

/api/v1/blockchain/claim/revokeAllowanceSignerPOST Removes auser’s signingper-
missions.

/api/v1/blockchain/claim/signPOST This API call helps a user signs a claim towhich
he has permissions.

/api/v1/blockchain/representative/addGenericClaimPOST This API call add generic
claim (representative).

/api/v1/blockchain/representative/addSpecificClaimPOST This API call add specific
claim.

/api/v1/blockchain/representative/grantAdminPOST Gives administrator permis-
sions to an user (wallet address).

/api/v1/blockchain/representative/revokeAdminPOST Remove administrator per-
missions to an user (wallet address).

/api/v1/blockchain/root/getGET This API call return the address of the root.

/api/v1/blockchain/supplier/addClaimPOST This API call add specific claim (sup-
plier).

/api/v1/blockchain/supplier/modifyClaimConditionPOST This API call modify an ex-
isting claim.

/api/v1/blockchain/supplier/modifyClaimPOST This API call changes a condition of
an existing claim.

Module APIs for Oracles For registering a new oracles, the project coordinators
have used a new type of variables for defining of an oracle, which is active in iExec
sidechain. Also, when someonewants to store a new oracle, it will be first registered
in the database.

35

Module APIs for Roles The method newRepresentative modifies a user role to rep-
resentative. A user will have representative permissions and will be able to create
microinsurance templates.

/api/v1/roles/newRepresentativePOST Turns a user into a representative.

/api/v1/roles/newSupplierPOST This API call turns a user into a Supplier.

/api/v1/roles/revokeRepresentativePOST This API call revokes a user’s representa-
tive role.

/api/v1/roles/revokeSupplierPOST This API call revokes a user’s Supplier role.

Module APIs for Sensors For sensors, the project coordinators have used Web of
Thing Description directory JSON for the definition of the sensor. When someone
wants to store a new oracle, it will be registered in the database.

/api/v1/microservices/getGET This API call gets all the microservices.

/api/v1/sensors/addDataPOST This API call registers a new sensor data.

/api/v1/sensors/deployPOST Deploys a sensor.

/api/v1/sensors/get_allGET This API call returns all sensors data.

/api/v1/sensors/getGET Get a sensor data.

/api/v1/sensors/registerPOST This API call register a new sensor.

Module APIs for Auth Login method will give the user access to the platform by
logging in.

/auth/contextGET This API call authenticate context.

/auth/custom_logoutPOST This API call performs custom Logout (close any session
knowing the ID).

/auth/email/verifyPOST This API call sends request to verify an account.

/auth/loginPOST This API call performs login operation with username and pass-
word.

/auth/logoutPOST This API call performs logout operation.

/auth/signupPOST This API call creates an account using email and password.

/auth/tfaPOST Two factor authentication login. Input the one-use code.

For more details of the API implementation please follow the link and go to the Swag-
ger API documentation tool.

36

https://app.swaggerhub.com/apis/dval/Carechain/1.0.0#/

2.2.11 BOWLER

Description Smart contract development is software-intensive, requiring specific and
scarce talent which is costly and prone to human risks. BOWLER offers a model-driven
Web-IDE to allow (a) faster time to market (KPI: 1-statement smart-contract deploy-
ment in <1hr), (b) easier evolution through reusable models, (c) fostering standardiza-
tion and thus interoperation amongst the entire ONTOCHAIN ecosystem. Indeed, the
BOWLER will provide end-to-end support through its web-enabled IDE to reuse pre-
existingmodel specifications (blueprint), model them and generate deployable Solidty
code. In this way, the BOWLER can be used by any member of the BOWLER ecosys-
tem to quickly deliver trustworthy smart contract solutions. Once more blueprints
are added to the Bowler, higher levels of standardization and interoperation between
smart-contract solutions of ONTOCHAIN partners can be reached. Notably, the project
is composed of five different program module. A brief description of those modules
have been given below.

Module AKB Portal pre-existing component characterizing the AstraKode
Blockchain platform, allows users to register, authenticate and authorize them-
selves to the platform, and access low-code environments for developing
blockchain solutions. It will therefore allow access to the Bowler Smart Contract
Visual IDE. It also integrates a payment gateway that will allow the solution to be
purchased and services delivered in SaaS mode.

Module Bowler Smart Contract Visual IDE is the visual development environ-
ment that will allow users tomodel the smart contracts and use the blueprint tem-
plates. This is a sophisticated black box module that allows to configure itself ac-
cording to a specific definition of the components characterising the metamodel
and the view files of a specific DSL (in the case of Bowler related to the creation of
Smart Contracts). The content will be enriched by integrations with the semantic
search module.

ModuleAKBService Layer is themodule providedby theAKBplatform tomanage
projects, users, subscriptions, and all services required to operate the platform. This
layer acts as the entry point and links with the big part of the other modules of the
service layer.

Module AKB Generator Engine can receive the compositemodel instance reflect-
ing a specific use case and, by means of two other fundamental elements, the pro-
cessors and the generation cartridges, is able to trigger a sophisticated templating

37

engine capable of producing the desired source code.
The processors, defined for every single component, determine the quantity and
type of output files resulting from code generation. The MDA-cartridges instead,
contain exactly functions and macros, that contain all the elements and mecha-
nisms required by a particular technology (Solidity, Javascript, Typescript, ...), to be
used to dynamically compose the contents of all output files.
One feature we believe is essential to the generation process is its complete plat-
form independence. The Platform Specific Model will be built through all the ele-
ments described above, enriched using place-holding techniques, of platform spe-
cific details.

Module Semantic Engine offers the ontological extensions planned for the scope
of BOWLER, stemming from the predefined baselines.

Application Program Interfaces This project does not have an SDK. The project ser-
vices will be provided to the final users bymeans of visual development environments.
Also, no Services have been implemented within the scope of this project. So, no APIs
havebeenprovided. However, specific APIs have beenprovided tomanagemodels and
generate smart contracts. The overview of these APIs have been presented bellow:

http://localhost:8080/AstraKode-BE_WS/rs/public/generatePOST this api call post anXML
instance string (the smart contract model) to the handler and returns the solidity gen-
erated file.

http://localhost:8080/AstraKode-BE_WS/rs/public/uploadPOST this call post an XML file
to the handler, which allows to handler to add additional ticket types.

http://localhost:8080/AstraKode-BE_WS/rs/public/get_rdfGET this method returns full
RDF for the XML files known to the prototype/system.

http://localhost:8080/AstraKode-BE_WS/rs/public/sqarqlGET this call helps handler to
run the SparQL engine, using a query provided. The input parameter query accepts
a basic text / string value, with a SparQL query.

2.2.12 MFSSIA

Description In recent years, it has been seen the emergence of identity authentica-
tion systems to enable access to public- and private systems that render life easier. For
example, in Estonia, the ID card has been essential for establishing the well known
e-governance infrastructure. However, over more than the last two years, it has also
seen the considerable erosion of citizen’s liberties and freedoms with QR-code pass-

38

ports that are a planned foundation for attaching a Chinese style social-credit score
system. Since such a development was considered undesirable, at least until 2019, it is
important to enable multi-factor self-sovereign identity authentication (MFSSIA) that
re-empower individuals for accessing in a trusted way information systems and to also
engage in the future in the so-called machine-to-everything (M2X) economy. For this
project and as per the implementation guide, the MFSSIA project focuses on enabling
trusted cross-blockchain connection establishment. Given the pre-existing scholarly
peer-reviewed research results about MFSSIA, the goal of this project is to map these
results into the available ONTOCHAIN technology stack. The decentralized knowledge
graph (DKG) solution has been used for expressing challenges and also to capture con-
texts forwhich responses to the challengesmust be detected. The iExec Cloud is on the
one hand the deployment infrastructure and on the other hand also delivers oracles to
MFSSIA lifecycle for confirming the validity of responses to the configured challenge
sets.

Application Program Interfaces
Module MFSSIA Module APIs is defined as a REST API that includes functions for
retrieving the data from DKG (in the current context business consensus, security
license and gateway). The modules API encapsulates the complexity of communi-
cationwithDKGnodes andprovides a simpleway for oracles to request andprocess
the DKG data.
get_business_consensus(string businessConsensusInfo) this function retrieves the data
about business contract from theDKGnode and returns its hash to the iExec oracle.
get_security_license(string securityLicenseInfo) first this function checks if re-
quested data is valid and then queries the DKG instance that contains information
about requested security licenses. If a respective security license is valid and the re-
questeddata is present in thedata contained in theDKG instance then the function
returns this data to the oracle.
get_gateway(string gatewayInfo) this function first validates the requested data and
if the request is valid then the function queries the DKG instance for the existence
and availability of these requested gateways. If such gateways exist and are avail-
able then the function returns this info to the oracle.

Module REST APIs FOR SERVICES Which is a communication adapter between
MFSSIA oracles and DKG nodes. This module is supposed to simplify the business
logic ofiExec oracles. All endpoints are available under <base_url>/v1/mfssia. AsMF-
SSIA is in the development phase, we do not yet have a production environment in
place, therefore, the base url of the API is defined as a parameter <base-url>. The
project coordinator did not use any specific headers, and they expect theDKGnode
to return json content.

39

/business-contract/<contract-id>GET takes id info of a contract to retrieve and it
return the hash of the business contract.

/security-license/<license-nr>GET takes number of security license as argument
and returns information about the security license.

/gateway/<gateway-type>GET takes the information about the type of the gateway
and it retrieves the gateway details from DKG.

The API for the iExec oracles has 3 functions. All endpoints are defined as GET HTTP
calls with one (1) integer input parameter that defines a unique identifier of the busi-
ness contract. Checking the business contract returns the hash of the DKG data while
calling the security license and the gateway endpoints will return info about the secu-
rity license and the gateway.

2.2.13 NFTSwap

Description The project expect a massive market development based on the new ap-
proach. Potentially the system and its upcoming copy cats will gather the majority or
at least a vast portion of the entire NFT-market due to its obvious benefits in the pre-
diction and valuation of formerly unvalued items/assets. The project prediction-system
will pave the path for the availability of new assets onchain. With its open-source ap-
proach theblockchain-agnostic solutionwill be used on additional chains openingnew
markets and new fields of interest. The solution architecture of NFTSwap project can
be compared to the smart contract architecture of UniSwap. There is a central factory
contract (Registry) that deploys individual NFT markets. Instead of deploying ERC20
contracts, the factory contract is an ERC1155 contract that registers all individual to-
kens used by the deployed markets. The architecture of NFTSwap is mainly comprises
of Central TokenRegistry, a few NFT-Markets, Router and the User Interface.

Module Token Registry (ERC1155) helps to tracks markets and bull and bear to-
kens, deploys contracts for newmarkets.

Module NFT-Market is mainly responsible to trad of Bull and Bear tokens within
the scope of this project.

Module Router makes it easier to interact with PiSwap protocol.

40

Module User Interface is the tool, which helps to the users to interact with the
NFT-Markets.

Application Program Interfaces No SDK implementation has been done for this
project. Therefore, no service APIs are offered by this project. Also, the smart con-
tract implementation technically does not offer a specific REST API for the implemen-
tation. The smart contract API can be generated from the source code allowing to in-
terface with it. Mainly two types of publicly callable functions of the PiSwapRegistry
and PiSwapMarket contracts, have been developed. Below, a thorough description of
them has been presented.

Module PiSwapRegistry this kind of functions mainly helps to register the smart
contracts in the existing Blockchain network. A detailed functionalities of this kind
of functions have been presented below.
function WETH() external view returns (address); Returns the address of the WETH
contract for the chain the protocol is deployed on.
function createMarket(address tokenAddress, uint256 tokenId) external returns (address market);
Creates a newmarket for a specific NFT identified by the NFT contract address and
token id. The function returns the address of the newly created market.
function mint(address to, uint256 amount, TokenType tokenType) external; Mints new
bull, bear or liquidity tokens to a specific address. Only callable by markets.
function burn(address from, uint256 amount, TokenType tokenType) external; Burns
bull, bear or liquidity tokens from a specific address. Only callable by markets.
function deposit(uint256 amount) external; Deposits WETH into the registry con-
tract and returns an equal amount of WETH1155 to the sender.
function withdraw(uint256 amount, address to) external; BurnsWETH1155 from the
sender and returns an equal amount of WETH to the specified address.
function beneficiary() external view returns (address); Returns the address of the
beneficiary for the protocol fee.
function fee() external view returns (uint256); Returns the protocol fee in myriad
taken when Bull and Bear tokens are minted or burned.
function oracleLength() external view returns (uint256); Returns the amount of
blocks taken into consideration for the NFT value oracle.
function getMarketForNFT(address tokenAddress, uint256 tokenId)

external view returns (address market); Returns the market address for a spe-
cific NFT identified by the NFT contract address and token id. Reverts if market
does not exist.
function marketExists(address tokenAddress, uint256 tokenId) external view returns (bool);
Returns true if a market exists for a specific NFT identified by the NFT contract
address and token id.

41

Module PiSwapMarket this type of functions enables the interactions with the
marketplace.
function registry() external returns (address); Returns the contract address for
the registry contract.
function underlyingNFT() external view returns

(address tokenAddress, uint256 tokenId, NFTType nftType); Returns contract address,
token id and NFT type (ERC721 | ERC1155) for the underlying NFT.
function mint(Arguments.Mint calldata args)

external returns (uint256 amountIn, uint256 amountOut); Mints newBull and Bear to-
kens according to the token formula as described in the whitepaper. Returns
amount of ETH given in and amount of Bull and Bear tokens minted.
function burn(Arguments.Burn calldata args)

external returns (uint256 amountIn, uint256 amountOut); Burns Bull and Bear tokens
according to the token formula as described in the whitepaper. Returns amount of
Bull and Bear given in to burn and amount of ETH returned.
function addLiquidity(Arguments.AddLiquidity calldata args)

external returns (uint256 liquidityMinted, uint256 amountBull, uint256 amountBear);

Adds liquidity to the liquidity pool. Returns the amount of liquidity tokens minted
to the liquidity provider, and amount of bull and bear tokens provided to the
liquidity pool. The amount of ETH provided to the liquidity pool is passed as an
argument and does not change, therefore it’s not returned. The initial liquidity
provider sets the initial NFT value using the amount of Bull and Bear tokens pro-
vided. All subsequent liquidity providers provide bull and bear tokens according to
the current ratio in the liquidity pool.
function removeLiquidity(Arguments.RemoveLiquidity calldata args)

external returns (uint256 amountEth, uint256 amountBull, uint256 amountBear);

Burns liquidity tokens from a liquidity provider and returns the proportionate
amount of ETH, Bull and Bear tokens to the provider.
function swap(Arguments.Swap calldata args)

external returns (uint256 amountIn, uint256 amountOut); Swaps one token into an-
other. Liquidity tokens cannot be swapped with the liquidity pool. Bull and Bear
tokens can be swapped with ETH and with each other. Returns amount in for the
token in and amount out for the token out. Token in and token out are defined in
the args struct.
function sellNFT(Arguments.NFTSwap calldata args) external returns (bool); Sells an
NFT for ETH with the contract for the current value set by the market. Returns true
on success.

42

function buyNFT(Arguments.NFTSwap calldata args) external returns (bool); Buys an
NFT held by the contract for ETH for the current value set by the market. Returns
true on success.
function mintOutGivenIn(uint256 amountIn) external view returns (uint256 amountOut);
Returns the amount of Bull and Bear tokens minted given amount of ETH.
function mintInGivenOut(uint256 amountOut) external view returns (uint256 amountIn);
Returns the amount of ETH in given the amount of Bull and Bear tokens to mint.
function burnOutGivenIn(uint256 amountIn) external view returns (uint256 amountOut);
Returns the amount of ETH returned given an amount of Bull and Bear tokens to
burn.
function burnInGivenOut(uint256 amountOut) external view returns (uint256 amountIn);
Returns the amount of Bull and Bear tokens to burn given the desired amount of
ETH.
function swapOutGivenIn(uint256 amountIn, TokenType tokenIn, TokenType tokenOut)

external view returns (uint256 amountOut); Returns the amount of tokenOut for a
given amount of tokenIn when swapping tokens.
function swapInGivenOut(uint256 amountOut, TokenType tokenIn, TokenType tokenOut)

external view returns (uint256 amountIn); Returns the amount of tokenIn required
to receive a given amount of tokenOut when swapping tokens.
function lockedEth() external view returns (uint256); Returns the amount of locked
ETH available that can be used to swap NFTs.
function nftValueAccumulated() external view returns (uint256); Returns the current
value of the NFT used by the contract when buying or selling NFTs. This value is
accumulated over a period of time to make it more resilient to manipulation.
function swapEnabled() external view returns (bool); Returns true if the amount of
locked ETH exceeds available to swap NFTs exceeds the current NFT value for a sin-
gle NFT.
function nftValueAvg(uint256 amount) external view returns (uint256); Returns the
average NFT value over the last amount of blocks. This function ismeant to be used
by other smart contracts integrating with the PiSwap protocol.
function nftValue() external view returns (uint256); Returns the most recent NFT
price. This value is less resilient to manipulation.
function getOracleEntry(uint256 index)external returns (uint256 price, uint256 timestamp);
Get an entry from the oracle array. Returns the price at the returned timestamp.
function oracleLength() external view returns (uint256); Returns the total amount
of NFT value entries in the oracle.

43

2.2.14 NFTWATCH

Description ThroughadvancedMLand semantic based technology, NFTWATCHhelps
to analyse and classify not only the structured data provided by the artist, but also un-
structured data fromdifferent sources, including the piece of art itself (ML based image
recognition and classification). Wewill use both the data collected and the data gener-
ated to propose multi-facet search and visual discovery of the NFT world. NFTWATCH
also enables the facilities to the NFT owners for checking their authenticity, andmatch
offchain and onchain. The data will be available not only through a GUI, but also by a
REST API. By creating a complete ontology around NFT data fed by multiple sources
associated with online visual data explorer, NFTWATCH is helping to fight the IP fraud
and structuring what may become the biggest art market in a very near future.There
are four logical components in theNFTWATCH solution corresponding to the fourmain
functions of the applications:

Collect NFTs, their metadata and associated media.

Enrich collected data and align them to the target model/ontology.

Store collected and enriched data.

Search among all data.

The fourmain components are: 1. Collect component; 2. Enrich component; 3. Storage
component; and 4. Front components.

Module Collect component is responsible to localize NFTs onmarketplaces and to
harvest all information’s about it: the resource itself (images, videos, sounds, text), id,
themetadata’s attach to the resource, smart contract and onchainmetadata.Spcial
note; in accordancewith theupdated scopeof theproject, NFTWatchwill onlyman-
age text and Image resources.

Module Enrich Component aims to extract all relevant information’s fromunstruc-
tured data using dedicated and appropriated algorithms. As we plan to consider
different natures of asset (image, video, sound, and text) and because we design
an open and flexible architecture, per nature, we propose to provide an interface to
different processors. For this project, we will use general components and only on
some text fields (NLP) and the image resource (Classification, features extraction).
For both cases, machine learning approaches will be used.

44

Module Storage component responsible to store the outputs of enrichment stage,
in an appropriate format. Mainly two kind of storage can be used within the scope
of this project.

Document oriented storage (Search engine) which have a good performance in
indexing and querying.

Graph oriented storage which is the most versatile kind of storage to authorize
advanced queries without knowing the queries at the beginning.

In the future, decentralized storage of some of contents (post enrichment only) will
be considered (not for this project). The model used into Neo4J is the common
model. To expose the data into the targeted ontology, the project intended to use
neosemantics , a Neo4J extension.

Module Front Components This components can be comprises of:

A REST API behind for legacy apps

A simple graphical interface to illustrate the features of the platform based on
the REST API.

Application Program Interfaces No SDK has been deployed for this project; however
to opt the services from the NFTWatch there are several APIs have been defined, which
are described below:

Module NFTWatch REST API enables to query NFTWatch database in order to
retrieved :

NFT metadata including description, metadata and NFT confidence score

NFT collection metadata including confidence score

a list of NFT corresponding to classification criteria

a list of NFT realized by an artist

/asset/<contract_address>/<token_id>?output_format=GET takes address of a con-
tract, identifier of the NFT related to the contract and information about the out-
put_format as arguments for returning all metadata associated to a NFT.

/assets?filters=&cursor =GET it returns a paged list of NFTs with their metadata.

/assets?rdfgraph=&cursor =GET returns a paged list of NFTs with their metadata.

/collection//<contract_address>GET returns all the metadata associated to a col-
lection, especially: i) A confidence score; ii) The number of tokens in the contract

45

/collection//<marketplace>/<collection name>GET returns same as the above there-
fore it gives all the metadata associated to a collection, especially: i) A confidence
score; ii) The number of tokens in the contract

/collections?cursor=GET returns a paged list of contract address. Next: A cursor
to be supplied as a query param to retrieve the next page; Previous: A cursor to be
supplied as a query param to retrieve the previous page.

2.2.15 DESMO-LD

Description DESMO-LD project aims to provide a fully integrated distributed solution
for consuming IoT external data, enriched with Web of Things semantics and data
model, inside the ONTOCHAIN. This addresses the call’s objectives of designing new
trustful decentralized Oracles to poll semantic data from off-chain data sources. Be-
sides, DESMO-LD introduces novel strategies to solve the above mentioned problems
thanks to the heavy deployment of standard ontology and semantic oriented consen-
sus algorithms for data quality and trustiness.The system architecture of the DESMO-
LD is divided between an on-chain part, consisting of a set of smart contracts, and an
off-chain part with the Oracle DApp and the Web of Things Thing Description Direc-
tory (TDD). In DESMO-LD different types of clients that may be interested in using the
system: a classic smart contract, a complete full-stack DApp, or even a pure web3 fron-
tend application. In particular, the environments span from on-chain deployments (i.e.,
smart contracts) and off-chain services and applications. Most of the core services will
be developed during this project time frame but some of those may be controlled by
different parties (i.e., VAIMEE s.r.l. may deploy and control some off-chain services, but
it encourages third parties to deploy and control their own). The components are fol-
lowing:

DESMO-LD iExecDOracle

DESMO-LD Hub

Oracle DApp

Thing Description Directory

Application Program Interfaces Notably, no SDK has been implemented for the
DESMO-LD project. Whereas, for ensuring to offer the services DESMO-LD has only
one off chain component which has open REST API endpoints. The name of the com-
ponent is Thing Description Directory. In belowwe are going to presents the APIs and
their functionalities:

https://tdd.desmo.vaimee.it/thingsGET this API call retrieve all thing description.

46

https://tdd.desmo.vaimee.it/things/idPUT this API call takes the ID of the created
thing description and returns the created thing description.

https://tdd.desmo.vaimee.it/thingsPOST this call takes the IDwhich to be created and
it returns the created thing’s description.

https://tdd.desmo.vaimee.it/things/idGET takes the ID of the created Thing descrip-
tion and in return it gives the thing description.

https://tdd.desmo.vaimee.it/things/idPUT by taking the ID of the created Thing de-
scription it helps to update the thing description.

https://tdd.desmo.vaimee.it/things/idPATCH this API call partially update the thing
description by taking the ID of the created thing.

https://tdd.desmo.vaimee.it/things/idDELETE taking created Thing ID as an argu-
ment, it deletes a thing description.

https://tdd.desmo.vaimee.it/search/jsonpath?query=queryGET this call takes the JSON
path query string as an arguments and returns the path result for successfully per-
forming the syntactic search.

2.2.16 PRINGO

Description Leveraging the blockchain capabilities to design new market mecha-
nisms, this sub-project provides a platform aimed at escaping from huge difference
in efficiency between free markets in the private vs common sectors in certain digital
industry verticals, by realigning incentives in commongoods economies so that private
agents obtain benefits as significant as in private goodsmarkets if their actions provide
real value to the commons.

To limit the scope of the sub-project, the sub-project owners’ propose an initial focus
towards developing a robust link between common goods and the videogames indus-
try. As last years boom in Non-Fungible Tokens (NFT) proved, users love owning digi-
tal assets (a song, a sword in a video game), and trading them in decentralized open
markets. The rules that govern these markets are public (based on open-source code
deployed to a blockchain), allowing entire decentralized economies to be built around
them. Then provides a platform, which is ease to use for common goods curators and
video game developers, whereby gamers can obtain direct profit from improvements
of the real curated goods. By doing so, it aims at significantly improving the funding of
certain common goods as well as to improve the retention, loyalty and commitment of
their contributors.

47

In PRINGO, to support some particular use cases (i.e., CGCs) through a control panel
dashboard, it integrated with an API implementation which integrates both gover-
nance and Freeverse evolving NFTs technology. In addition, another role-based view
of the dashboard supporting game users use cases also integrated with both Freev-
erse API and governance layer (in this occasion to check update status of the NFTs.
Finally the SDK layer to support video-game companies integration; either using a
reference implementation client with Freeverse to ease the companies engagement
with the project or modular specifics clients that could fit into the game development
workflow itself like C# for Unity or C++ for Unreal Engine as example. The PRINGO
platform consists of a set of smart contracts deployed on a low-environmental impact
blockchain, alongside nodes for the corresponding Living-NFT Layer 2, together with a
set of tools to facilitate interaction/integration to different actors. Mainly these module
are: PRINGO-backend, PRINGO-SDK, PRINGO-frontend.

Application Program Interfaces For PRINGO, there are two kind of APIs, can be found.
One for accessing the SDK and the other one kind of APIs is responsible for providing
various services. In below, those have been thoroughly described.

Module REST APIs for SDK provides a simple interface to manage the different
project workflows; it is intended to be consumed both by the marketplace oper-
ators, common good curators using REST APIs described in the next section. In
addition this interface mainly allows video game developers to interact with Free-
verse NFT API. Below, the related functions of this interface have been presented
thoroughly.
getNonceCount this function call returns the user nonce inside a particular Freeverse
universe.
getAssetNonceCount this function call returns the asset nonce by taking the Freev-
erse universe identifier as argument.
getAssets this function fetch the assets information by taking index information,
number of assets, and asset owner’s delegate key as arguments.
getAssetsByAttribute this function filters assets by attribute.

getAssetById this function call takes asset ID as argument and returns an asset
corresponding to the identifier.
createAsset taking asset information including metadata as arguments and it
helps to create a new asset.
updateAsset taking asset ID (which has to be updated) as an argument andupdates
it according its identifier.
createBuyNow this function call helps to post a buy now order in freeverse second
layer.

48

createBuyNowPayment takes the asset identifier as arguments to allow buy an asset,
which is previously put for sale.
setDropPriority this function helps the specific flow for the Freeversemarketplace.
Allows ordering NFTs in drops view.
getAuthToken this function returns an authentication token from Freeverse API.

updateAssetBulkByAssetId takes asset IDs, properties, metadata and nonce as argu-
ments for updating a bulk set of assets.

Module REST APIs for services to be consumed by themarketplace and the com-
mon good curator control panel.

https://<base_uri>/api/v1/assetGET it returns NFT assets from Freeverse.

https://<base_uri>/api/v1/assetPOST this call helps to create a new NFT asset.

https://<base_uri>/api/v1/asset/bulk/updatePOST it helps to bulk update asset op-
eration. This endpoint is useful to bulk updatedesired attributes ona rangeof assets
at the same time

https://<base_uri>/api/v1/asset/asset_idGET this API call returns an NFT Asset
from Freeverse filtering by asset id.

https://<base_uri>/api/v1/asset/asset_idPUT helps to update an NFT asset.

https://<base_uri>/api/v1/asset/asset_id/buyNowPOST this API call helps to buy an
asset that is on sales state.

https://<base_uri>/api/v1/asset/asset_id/dropPOST this API call creates a specific
flow for the Freeverse marketplace. In that platform there a Drops tab so Freeverse
use the priority field to order the assets in that tab.

https://<base_uri>/api/v1/asset/asset_id/plantLocationGET it helps to get plant lo-
cation real data from Plants for the Planet data endpoint.

https://<base_uri>/api/v1/asset/asset_id/projectGET this API call corresponds
with the getting real data from Plants for the Planet data endpoint.

https://<base_uri>/api/v1/asset/asset_id/putForSalePOST for successful operation
of this API, it helps to put an asset for sale for a certain amount of time, and the first
buyer to pay acquires the asset.

https://<base_uri>/api/v1/proposalPOST this API call helps to post the new pro-
posal. Mainly this API is considered as the end point for governance proposal cre-
ation.

https://<base_uri>/api/v1/proposalPUT this API call corresponds with the gover-
nance proposal sponsoring, voring and processing endpoint (depending on the ac-
tion specified in the body request).

49

https://<base_uri>/api/v1/asset/asset_id/projectGET for successful operation of
this API call, it returns project real data from plants for the planet data endpoint.

https://<base_uri>/api/v1/member/member_idGET this API call helps to fetch the gov-
ernance member information and status.

2.2.17 PXC

Description PolyCrypt (PXC) contributes to the overall objective of the ONTOCHAIN
project to create a software ecosystem for the next generation Internet/social networks
and for vital sectors of the European economy. It provides a secure, scalable and open
cross-chain layer which is ready to connect ONTOCHAIN with any existing and future
blockchain systems. PolyCrypt comprises of four different architectural components:
1. Blockchain infrastructure; 2. Server components; 3. Frontend; and 4. Software de-
velopment kit.

Application Program Interfaces In essence, SDK provides a state channel network
client, to interact with a state channels network. Once the client has been set up, it can
be used to propose channels to other network peers, accept channel proposals, send
updates on those channels and eventually settle them. The SDK offers a holistic func-
tion set which is growing continuously. Notably, the package client contains the Perun
State Channel network protocol implementation. It provides a Client that exposes the
central API to communicate with a channel network. The Client provides Channel con-
trollers to interactwith individual channels. In the below, those function calls have been
given:

NewChainNotReachableError constructs a ChainNotReachableError and wraps it with the
actual error message.

NewTxTimedoutError by taking the transacrtion ID and type as the arguments, this func-
tion call constructs a TxTimedoutError and wraps it with the actual error message.

AdjudicatorEventHandler represents an interface for handling adjudicator events.

BaseChannelProposal contains all data necessary to propose a new channel to a given set
of peers. It is also sent over the wire. BaseChannelProposal implements the channel
proposal messages from the Multi-Party Channel Proposal Protocol (MPCPP).

BaseChannelProposalAcc contains all data for a response to a channel proposal message.
The ProposalID must correspond to the channel proposal request one wishes to re-
spond to. Participant should be a participant address just for this channel instantiation.
The type implements the channel proposal response messages from the Multi-Party
Channel Proposal Protocol (MPCPP).

50

ChainNotReachableError indicates problems in connecting to the blockchain network
when trying to do on-chain transactions or reading from the blockchain.

Channel is the channel controller, progressing the channel state machine and execut-
ing the channel update and dispute protocols. Currently, only the two-party protocol is
fully implemented.

ChannelMsg this function call returns all messages that can be routed to a particular
channel controller.

Besides these function calls many others APIs have been developed for different func-
tion calls which are responsible for accessing different module of these projects. More
details about SDK APIs for PXC can be found at this link: https://pkg.go.dev/perun.
network/go-perun@v0.9.0/client#pkg-overview.

2.2.18 GEONTOLOGY

Description GEONTOLOGY aims to develop a network protocol that promotes regu-
lation of data exchange, trust, consent management, reputation and security as con-
tribution for the emerging Data Economy Ecosystem built on Blockchain technology.
In details, GEONTOLOGY proposes an innovative protocol called Proof of Offset (POO)
to enable a higher control and limit data access by geo-location, accountability, data
exposition minimization, data semantic annotation that guarantee cross-domain data
re-use and higher awareness about data protection. POO algorithm will be provided a
deterministic mechanism to validate the geo-location from nodes requesting data in
order to validate its legal jurisdiction. In addition, POO algorithm will be specialised to
detect the use of relay nodes such as proxies and other entities that could manipulate
the network location (IP address).

GEONTOLOGY aims to create significant evidence of the benefits of the proposed pro-
tocol. as part of an emerging data economy for the safety data reuse, accountability
and trust via newmodels that guarantees the satisfaction of rules, contracts and agree-
ments in terms of quantity (accountability), geo-location (legal constraints beyond Eu-
ropean Union and Swiss borders), and data usage (data minimization and rights to re-
voke permissions) that enable and promote new collaboration models driven by users
acceptance, compliance with new regulation frameworks, community-driven reputa-
tion schemes and integral data management. Finally, GEONTOLOGY has defined a
methodology that guarantees the development of prototypes and demonstrators that
could be valorised by industry. The results will be validated over a large-scale geo-
distributed and interconnected testbed offered by ONTOCHAIN, PlanetLab/Fed4FIRE
and/or public cloud, in order to demonstrate how it works over Internet and also over
Internet Agnostic Networks.

51

https://pkg.go.dev/perun.network/go-perun@v0.9.0/client#pkg-overview
https://pkg.go.dev/perun.network/go-perun@v0.9.0/client#pkg-overview

Geontology brings several services and nodes that interact between them coordinated
by a core component called Geo-Localization Service in charge of distributing the tasks
and analysing the result provided by the nodes.

Client: node of the network whose geolocation is to be determined by the system.
Usually, it will be a client trying to access a web service, but it will be also developed
the approach of a LwM2M IoT device trying to connect to a server to a bootstrap
server.

Service: represents theweb service where the client wants to access, it can be aweb
service or an IoT server.

Geo-Localization Service: that makes available the necessary geolocation data of
clients and the entire network infrastructure to obtain said information.

Nodes: connection point of the network that is part of the infrastructure provided
by the Geo-location Service and that will try to establish connections with the client
that is given by the service.

Application Program Interfaces Notably no SDK has been devel-
oped for the users’ interaction; however services are established
over HTTP. This service, for this explanations sake, hosted in the
https://app.swaggerhub.com/apis/CTORRALBA/GEONTOLOGY_ORCHESTRATOR/1.0.0#/.

/geontology/api/monitor/registrationPOST once this request is received, the orchestra-
tor executes the 2 phases of POO algorithm to verify the requester geolocation. Once
verified, it will either allow or deny the registration depending on the final conclusion
on its geolocation. If allowed, this user will be considered a monitor and will take part
in future verification for new coming users.

/geontology/api/monitor/validateRegistrationPOST once the monitor has finished the
training process, it will send its computed coefficients to the orchestrator so that they
can be stored.

/geontology/api/monitor/disconnectDELETE a request from amonitor to disconnect it-
self from the Geontology service as a monitor.

/geontology/api/monitor/geolocateDataPOST as phase 1 of POO algorithm focuses on
geolocating an objective, a verification for this objective is created and a selected set of
subscribed monitors will have to ping the objective and post the results in the service
for this verification. These results are the Proof of Offset.

/geontology/api/monitor/verifyPOST the monitor chosen as a verificator for the spec-
ified verification posts its results in regards to POO’s phase 2 to the orchestrator.

52

/geontology/api/objective/registrationPOST a client who wishes to have their geolo-
cation verified must register in the GEONTOLOGY service as an objective in the first
place.

/geontology/api/objective/initPhaseOneGET once an objective is registered in the ser-
vice, it is ready to have its geolocation verified staring with phase 1 of the algorithm,
which is focused on estimating a geolocation for the objective by applying a multilat-
eration algorithm to the latencies measured by the monitors.

/geontology/api/objective/initPhaseTwoGET once phase 1 has ended, a closestmonitor
to the geoposition estimated in phase 1 is choosen as the verificator for this verification
and is given a set of IPs called bots from the estimated country to ping. This same set
of IPs is sent to the objective to ping them as well.

2.2.19 DKG

Description TheDKGKnowledge Tool Stack developedwithin theOntochain project is
bringingnovelty in easy access to themarket of existing knowledge anddata resources,
by enabling

Provisioning unique cryptographic tokens for each knowledge asset to facilitate
knowledge exchange

Enabling a knowledge wallet system, designed to easily interface with existing data
stores and enable secure and trusted data sharing

Knowledge marketplace tooling, enabling anyone to build domain specific, yet in-
teroperable knowledge marketplaces

Knowledge marketplace tooling, enabling anyone to build domain specific, yet in-
teroperable knowledge marketplaces

The tools are intended to interoperate and several of the illustrated functionalities can
be implemented by utilizing multiple of the tools in concert. However, for the purpose
of clarity we introduce each of the tools independently. The DKG knowledge tool stack
is developed based on the OriginTrail Decentralized Knowledge Graph and it is com-
posed of three main components: 1. Knowledge Marketplace; 2. Knowledge Tenders;
and 3. Knowledge Wallet.

Application Program Interfaces
Module APIs for SDK: Knowledge tokens implement a blockchain-based SDK API
communication. Third-party components such as DEX, general smart contracts,
Fair swap protocol implementation, and the DKG are not presented in the section.

53

Knowledge tokens presents blockchain-basedmodule that implements decentral-
ized exchange.
mintTokens this functionmints the tokenswith provided amount, type, and symbol.
For both fungible and non-fungible tokens, the sender becomes the owner of the
tokens.
transfer this function is a proxy function for which helps to transfer tokens.
approve this proxy function stands for approval.

totalSupply this function call returns total supply of a kToken.

balanceOf this proxy function stands for both ERC20 and ERC721 tokens.

Module REST APIs For Services: Knowledge wallets, marketplaces, tenders im-
plement REST API communication. The following is a list of the components with
REST API definitions.

Module Knowledge marketplace (kMarket): Knowledge marketplace
presents hosted interface, implementing knowledge services that interact with
underlying kMarket smart contracts and DKG. The idea is that this interface can
be used by anyone as it utilizes decentralized networks as it’s backend.

http://localhost/advertisePOST taking unique identifier of an asset, resolves
the UAL on the network and optionally stores assets metadata locally.

http://localhost/searchPOST retrieves all UALs associated with the keyword
from thenetwork and optionally load the assets from the local cache. Optionally
will be used for more generic queries.

http://localhost/withdrawPOST taking UAL as argument, this function call
withdraw tokens acquired through sale (by the seller).

http://localhost/complainPOST by taking purchase ID and misbehavior infor-
mation, this function call initiates misbehaviour procedure.

54

Module Knowledge tenders (kTender): Knowledge tenders interfaces
presents hosted interface that implement tender services, that interactwith un-
derlying kTender smart contracts andDKG. The idea is that this interface can be
used by anyone as it utilizes decentralized networks as it’s backend.

http://localhost/advertisePOST taking unique ID for an asset and price for
data submission related information; this function call resolves the UAL on the
network and store assets metadata locally.

http://localhost/searchPOST taking keyword associated of an asset and price
for data submission related information; this function retrieves all UALs asso-
ciated with the keyword from the network and local cache that matches the
price.

http://localhost/submitPOST this function call retrieves UAL associated with
the keyword from the network and stores it locally.

http://localhost/withdrawPOST taking UAL as an argument this function call
helps to withdraw tokens acquired through sale (by the buyer).

http://localhost/complainPOST this function call initiatesmisbehaviour report
procedure.

Module Knowledge wallets (kWallet): Knowledge wallet presents hosted in-
terface that performs exchange data for tokens.

http://localhost/createPOST by taking JSON-LD data as argument; this function
call creates new asset graph on the DKG.

http://localhost/updatePOST this function call helps to update an asset graph
state on the DKG.

http://localhost/initiatePurchasePOST taking asset’s identifier and purchase
price information; this function call initiates purchase according to the fair swap.

http://localhost/purchaseGET this call returns status of a purchase.

http://localhost/tokenizePOST this function call is working like as an interface for
tokenization (calls mintTokens of the kTokens contract and associates with UAL).

2.2.20 PS-SDA

Description The PS-SDA project focuses on enhancing the auditability and prove-
nance of any personal data exchange transaction to strengthen trust and transparency
in the digital economy. It helps organisations to leverage personal data while being
transparent and legitimate in their data usage. It also empowers individuals to control

55

how their data is used and exchanged. The DEXA functions are available as microser-
vices that can be plugged into existing systems, such as in iGrant.io SSI data exchange
workflows. The core components are exposed as RESTFul APIs. The components can
exist independently in any service provider agreement handling system. Espcially the
Data Exchange Agreements (DEXA)

Application Program Interfaces For the PS-SDA project, no SDKs are required for the
DDA implementation. Existing DA SDKs will be reused and be revised to support new
flows. On the other hand, PS-SDA provides different service APIs which are classified
as:

Module Individuals
/individuals/data-agreementsGET this function call helps to view signed DAs.

/individuals/data-using-serviceGET it helps to view the shared data using services
for a given organisation.

/individuals/data-disclosure-agreementsGET it helps to view the DDA(s) in an or-
ganisation.

/individuals/data-agreements/data_agreement_id/provenance_trailGET this function
calls helps to fetch provenance trail for a DA.

Module Organisations (DS and DUS)
/organisation/data-disclosure-agreementPOST this function call helps to create

DDA template.
/organisation/data-disclosure-agreementGET it list all published DDAs.

/organisation/data-disclosure-agreement/data_disclosure_agreement_idPUT Update
signed DDA by ID.

/organisation/data-disclosure-agreement/data_disclosure_agreement_idDELETE this
call helps to delete signed DDA by ID.

/organisation/data-agreementsGET View signed DAs (Org. copy).

/organisation/data-agreements/data_agreement_id/provenance_trailGET it fetch
provenance trail for a DA.

/organisation/data-disclosure-agreements/data_disclosure_agreement_id/organisation/organisation_id/offerPOST
it offer a DDA to an organisation.

/organisation/data-disclosure-agreements/data_disclosure_agreement_instance_id/acceptPOST
it helps to accept a DDA sent by an organisation.

/organisation/data-disclosure-agreements/data_disclosure_agreement_instance_id/rejectPOST
this call helps to reject a DDA sent by an organisation.

56

/organisation/data-disclosure-agreements/data_disclosure_agreement_instance_id/terminatePOST
it terminate a DDA sent by an organisation.

/organisation/data-agreements/data_agreement_id/auditor/auditor_id/request-verifyPOST
it request verification of a DA instance by a third party auditor.

/organisation/audit-requestsPOST this call query audit requests sent.

Module Auditors
/organisation/audit-requestsPOST this function call query audit requests received.

/auditor/audit-requests/audit_request_id/verifyPOST this call Verify the digital sig-
natures in DA.

57

3 ONTOCHAIN GATEWAY API

This section describes the ONTOCHAIN Gateway API and its functionalities. The Gate-
way API will be the single-entry point for developers and users of ONTOCHAIN services.
It is composed of three modules:

1. ServiceDiscovery lets programs search searchdeployedONTOCHAIN serviceswith
structured queries and access them directly;

2. Accounts Management provides functions related to user accounts and access
rights:

3. Data Storage lets users and program upload data that can then be used by ON-
TOCHAIN services, and download certain data that has been produced by ON-
TOCHAIN services.

Each of these modules are described in the rest of this section, along with the details
of the API functions they provide. These APIs where were defined by the ONTOCHAIN
consortium andwere part of the Open Call 3material; they will be implemented by the
BABELFISH project which was selected in OC3.

3.1 SERVICE DISCOVERY

In the third year of the project, ONTOCHAIN will integrate the several of the projects
that were funded through OC1 and OC2 (see Section 2.2), which represents between
25 and 30 services to deploy on the pilot network by the end of 2023. The exploitation
of ONTOCHAIN’s results will bring evenmore services in the future, driving the need for
machine-to-machine discovery mechanisms.

In this section we introduce the ONTOCHAIN Services catalog, which will service as a
single entry point to accessing ONTOCHAIN services. The catalog will provide search
mechanisms and return pointers to the service implementations directly to the clients,
in the form of API endpoints when available. The search features will support advanced
ontology-based queries so that consumer applications can search for services based
on functionalities, implement their own selection algorithm and start consuming the
services without requiring specific human interactions.

Module Services catalog This module will provide a programmable way of dis-
covering the services provided through the ONTOCHAIN ecosystem. Access to the
functions will be authenticated and regular users will only have access to read op-
erations. Write operations will be accessible only to administrators, unless noted in

58

the function’s description.

<base_uri>/list/count/page?filter=JSONGET Obtain a list of all the available services
as a JSONstring. Arguments count (max. 100) and page areused to control thenum-
ber of results. An optional argument can be provided to filter the types of desired
services; the argument is a url-encoded JSON document that can contain every
field of the resource description schema. Returns a JSON document with the de-
sired result count (or less) and HTTP code 200 in case of success, HTTP 400 if the
provided filter cannot be decoded, and code 401 if the user is not authenticated.

<base_uri>/service/search?query=QUERYGET Obtain a list of services which name or
descriptionmatch the provided search terms. The QUERY argument can contain one
or several url-encoded terms. Returns a JSON document with matching project
descriptions and HTTP code 200 in case of success, HTTP 400 if QUERY is absent,
and code 401 if the user is not authenticated.

<base_uri>/service/SERVICE_IDGET Obtain the detailed description of a service as
a JSON string. The argument is the service identifier that can be obtained with the
/list function. Returns a JSON document and HTTP code 200 in case of success,
HTTP 404 if the requested service cannot be found, and code 401 if the user is not
authenticated.

<base_uri>/service/POST Add a new service to the catalog. The request body
must contain a JSON document containing the complete service description. Re-
turns HTTP code 200 in case of success, HTTP 400 in case the description has an
incorrect format, and HTTP 401 if the user is not authenticated or does not have
the required privileges.

<base_uri>/service/SERVICE_IDPUT Update the details of a service already stored in
the catalog. The function takes the identifier of the service thatmust be updated as
an argument and the request bodymust contain a JSONdocument containing the
new service description. Returns HTTP code 200 in case of success, 400 in case the
description has an incorrect format, 404 if the requested service does not exist, and
code 401 if the user is not authenticated or does not have the required privileges.

<base_uri>/service/SERVICE_IDDELETE Removes the service pointed by argument
SERVICE_ID from the catalog. The service is not actually removed, it will only be
marked as deleted and itwill no longer bepart of the results of the /list and /search
functions.

3.2 ORGANIZATION AND USER ACCOUNTS

Users in the ONTOCHAIN ecosystem can be either consumers or providers of services,
or both. Users can be attached to an organization or be registered independently. The
goal if thismembershipmodel is both to drive engagement, by providing ONTOCHAIN

59

with specific features (e.g. a user portal) and to manage accounting, i.e. payment for
services and crypto-wallets.

Module Accounts management This module provides interfaces for creating
users and organizations, and basic interactions with wallets. All API calls must be
authenticated and write operations are accessible only to administrators, unless
specifically noted.

<base_uri>/organization/POST Create a new organization with no users. The re-
quest body must contain the details of the organization as a JSON document (e.g.
its name, short description, contact address). The call returns the identifier of the
new organization and HTTP code 200 in case or success. The call can also return
HTTP code 400 if the organization description is not a valid JSON document or if
required fields are missing, and code 401 if the user is not authenticated.

<base_uri>/organization/ORGANIZATION_IDPUT Updates the information related to an
existing organization. The identifier of the organization must be provided in the
query string, and the request bodymust contain the newdetails of the organization
as a JSON document. The call returns HTTP code 200 in case or success, code 400
if the organization description is not a valid JSON document or if required fields
are missing, 404 if the organization does not exist, and code 401 if the user is not
authenticated.

<base_uri>/organization/ORGANIZATION_IDGET Obtain the details related to an exist-
ing organization. The call takes the identifier of the organization as an argument
and returns a JSON document containing the organization’s information. The call
returns HTTP error code 200 in case of success, 404 if the organization does not
exist, and 401 if the user is not authenticated.

<base_uri>/organization/ORGANIZATION_ID/listGET Obtain the list of users that are
members of an organization. The identifier of the organization is taken as the sole
argument to the call. The call returns JSON array of objects describing the users. In
case of success, the call return HTTP code 200; the call can also return code 404 if
the organization cannot be found, and 401 if the user is not authenticated.

<base_uri>/organization/ORGANIZATION_IDDELETE Request the deletion of an orga-
nization. The organization will be market as deleted but no data will actually be
removed, in order to preserve the history of the platform. If the organization con-
tains users, the users will not be removed but will appear as independent. The only
argument to the call is the identifier of the organization. In case of success, the call
returns HTTP code 200. The call can also return code 404 if the organization does
not exist and code401 if the user is not authenticated or does not have the required
privileges.

<base_uri>/user/POST Create a new user. The request bodymust contain the de-
tails of the user as a JSON document (e.g. its name, organization, email address,

60

phone number). The call returns the identifier of the new user and HTTP code 200
in case or success. The call can also return HTTP code 400 if the user description is
not a valid JSON document or if required fields are missing.

<base_uri>/user/USER_IDPUT Updates the information related to an existing user.
The identifier of the usermust beprovided in thequery string, and the request body
must contain thenewdetails of theuser as a JSONdocument. The call returnsHTTP
code 200 in case or success, code 400 if the user description is not a valid JSON
document or if required fields are missing, 404 if the user does not exist, and code
401 if the requesting user is not authenticated.

<base_uri>/user/USER_IDGET Obtain the details related to an existing user. The call
takes the identifier of the user as an argument and returns a JSON document con-
taining the user’s information. The call returns HTTP error code 200 in case of suc-
cess, 404 if the user does not exist, and 401 if the requesting user is not authenti-
cated.

<base_uri>/user/USER_IDDELETE Request the deletion of a user. The user will be
market as deleted and all of associated information (except its identifier, in order
to preserve the history of the platform) will be removed. The only argument to the
call is the identifier of the user. In case of success, the call returns HTTP code 200.
The call can also return code 404 if the user does not exist and code 401 if the
requesting user is not authenticated or does not have the required privileges.

<base_uri>/user/USERNAME/walletGET Obtain the details (chain, address, balance)
of the user’s wallets in the ONTOCHAIN ecosystem. The call takes the identifier of
the user as an argument and returns the wallets information as a JSON document
along with HTTP code 200 in case of success. The call can also return code 404 if
the user does not exist or has been deleted, and code 401 if the requesting user is
not authenticated or does not have the required privileges.

3.3 STORAGE SERVICE RESULTS/OUTPUT

Data storage is a special kind of service in the way they provide a communication
medium between other services. In order to facilitate these interactions, the Data stor-
age module provides high-level interfaces for storing and retrieving files and arbitrary
blobs of data to and from providers, including external storage providers such as Ama-
zon S315, Dropbox16 and IPFS17. The underlying storage providers will be selected in
the last year of the project, based on the requirements of the applications selected in
OC3.

15https://aws.amazon.com/s3/
16https://www.dropbox.com/
17https://ipfs.io/

61

https://aws.amazon.com/s3/
https://www.dropbox.com/
https://ipfs.io/

Module Data storage Themodule provides users and applications with high-level
interfaces that are common to all of the supported backend storage services, both
members of the ONTOCHAIN ecosystem, and external services. Storage providers
can be searched in the Service catalog like any other service (see Section 3.1).

<base_uri>/collection/POST Create a new collection of objects, similar to a direc-
tory in a file system. The call takes a description of the collection (including the
storage provider) in the JSON format as an argument. The call only creates a record
for the collection, it does not store any data object. In case of success, the call re-
turns the identifier of the new collection and HTTP code 200. In case of failure, the
call returns code 400 (if the JSON document cannot be interpreted) and 401 if the
user is not authenticated or does not have the required privileges.

<base_uri>/collection/COLLECTION_IDPUT Updates the information related to an ex-
isting collection of objects. The identifier of the collection must be provided in the
query string, and the request body must contain the new details of the collection
as a JSON document. The call returns HTTP code 200 in case or success, code 400
if the collection description is not a valid JSON document or if required fields are
missing, 404 if the collection of object does not exist, and code 401 for unautho-
rized access.

<base_uri>/collection/COLLECTION_IDGET Obtain the details related to an existing
collection of objects. The call takes the identifier of the collection of object as an ar-
gument and returns a JSON document containing the information of correspond-
ing collection of objects. The call returns HTTP error code 200 in case of success,
404 if the collection of object does not exist, and 401 for the unauthenticated ac-
cess request.

<base_uri>/collection/listGET Obtain the list of collection of objects. The call re-
turns JSON array of objects describing the collection of objects. In case of success,
the call return HTTP code 200; the call can also return code 404 if the collection of
objects cannot be found, and 401 for unauthenticated access request.

<base_uri>/collection/COLLECTION_IDDELETE Request the deletion of a collection of
object. The collection of object will be market as deleted but no data will actually
be removed, in order to preserve the history of the platform. If the collection of
object contains users, the users’ information will not be removed but will appear as
independent. The only argument to the call is the identifier of the collection. In case
of success, the call returns HTTP code 200. The call can also return code 404 if the
collection IDdoes not exist and code401 if the requester (user) is not authenticated
or does not have the required privileges.

<base_uri>/object/POST Create a new object. The call takes a description of the
collection (including the storage provider) in the JSON format as an argument. The
call only creates a record for the object. In case of success, the call returns the iden-
tifier of the new object and HTTP code 200. In case of failure, the call returns code

62

400 (if the JSON document cannot be interpreted) and 401 if the user is not au-
thenticated or does not have the required privileges.

<base_uri>/object/OBJECT_IDPUT Updates the information related to an existing
objects. The identifier of the object must be provided in the query string, and the
request body must contain the new details of the object as a JSON document. The
call returns HTTP code 200 in case or success, code 400 if the object description is
not a valid JSON document or if required fields are missing, 404 if the object does
not exist, and code 401 for unauthorized access.

<base_uri>/object/OBJECT_IDGET Obtain the details related to an existing objects.
The call takes the identifier of the object as an argument and returns a JSON doc-
ument containing the information of corresponding object. The call returns HTTP
error code 200 in case of success, 404 if the object does not exist, and 401 for the
unauthenticated access request.

<base_uri>/object/OBJECT_IDDELETE Request the deletion of a object. The object
will be market as deleted but no data will actually be removed, in order to preserve
the history of the platform. If the object contains users, the users’ information will
not be removed but will appear as independent. The only argument to the call is
the identifier of the object. In case of success, the call returns HTTP code 200. The
call can also return code 404 if the object ID does not exist and code 401 if the
requester (user) is not authenticated or does not have the required privileges.

<base_uri>/object/OBJECT_ID/readGET Obtain the details related to an existing ob-
jects. The call takes the identifier of the object as an argument and returns infor-
mation of corresponding object. The call returns HTTP error code 200 in case of
success, 404 if the object does not exist, and 401 for the unauthenticated access
request.

<base_uri>/object/OBJECT_ID/writePUT Updates the information related to an ex-
isting objects. The identifier of the objectmust be provided in the query string, and
the request body must contain the new details of the object as a document. The
call returns HTTP code 200 in case or success, code 400 if the object description is
not a valid or if required fields are missing, 404 if the collection of object does not
exist, and code 401 for unauthorized access.

base_uri>/object/OBJECT_ID/USER_IDPOST Checks the access control for a particular
user to access a particular object. If the user has the access grant for the accessing
the object it returns HTTP code 200. Returns code 400 if the object description is
not a valid or if required fields aremissing, 404 if the object does not exist, and code
401 for unauthorized access

63

4 THE ONTOCHAIN PILOT NETWORK

Today, blockchain-based systems face many challenges related to scalability, privacy,
security, and various other aspects. To solve these issues, many researchers have
proposed different solutions. Among all these existing solutions, the sidechain con-
cept [9] solves many existing blockchain issues and opens many new doors for using
the blockchain in different application domains. Therefore, considering that fact, using
the sidechain concept is beneficial for our project. Thus, we have adopted this con-
cept for developing the pilot use-cases. Mainly, sidechains are secondary blockchains;
they are connected with the other blockchain using the two-way peg methodology.
Notably, the two-peg mechanism mainly enables the functionalities for bidirectional
transfer of assets between the mainchain and sidechain at a fixed or pre-deterministic
exchange rate. Remaining of this section, focusing on the two-pegmechanism, we are
going to explain the overall deployment strategy for the pilot use-cases thoroughly.

The choice of relying on a sidechain over layer-2 solutions such as rollups is due to
the lack of maturity of layer-2 chains at this time. However, the decision of relying on
the EVM for the main ONTOCHAIN chain will ensure that upcoming updates to the
Ethereum protocol and implementation (Ethereum 2.0) which are due to be deployed
in 2022 and 2023will benefit past, current and future ONTOCHAIN services and appli-
cations. Indeed, since almost all ONTOCHAIN services sit at the application layer, they
will remain compatible with Ethereum updates (to the exception of GraphChain which
relies on amodified Hyperledger Besu client whichmay require a small update in order
to support Ethereum 2.0).

4.1 FOUNDATION OF PILOT NETWORK

The ONTOCHAIN network is based on the Ethereum Virtual Machines (EVMs) but not
on the Ethereum network for various reasons. To begin, the consortium decided to
build its blockchain-based pilot to test and validate various applications within the ON-
TOCHAIN framework to fulfil the ONTOCHAIN’s vision and pre-setted objectives. The
MoUhas been signed between different consortiumpartners (i.e., iExec & IntelliSeman-
tic, iExec&AthensUniversity of Economics andBusiness, iExec&University of Ljubljana)
for this purpose, and the SLAs have been defined for developing the ONTOCHAIN pi-
lots. However, it is critical to determine the pilot’s effective and efficient design before
developing pilots. Notably, pilot designs’ effectiveness and efficiency depend on the
consensus protocol chosen, the number of blockchain nodes deployed, and the adop-
tion of prominent governance policies. Furthermore, for the ONTOCHAIN framework,
energy consumption is one of the critical points which has been considered before de-
veloping the pilots. Therefore, in the ONTOCHAIN ecosystem, we have developed our
blockchain network based on the iExec provided Bellecour sidechain, considering the

64

Proof-of-Authority (PoA); more precisely, authorityRound (AuRa) consensus algorithm.
In past studies, it has been shown that the PoA-based blockchain network consumes
less energy for making the transactions compared to Proof-of-Work (PoW) or Proof-of-
Stakes (PoS) or any other consensus-based blockchain network [10]. In the following
section, we are going to present a more deep insight view of the pilot deployment.

4.2 STATUS OF THE ONTOCHAIN NETWORK

During this stage of the ONTOCHAIN, the consortium has decided to decentralize the
iExec sidechain for developing the pilot. Therefore, three new validator nodes have
been deployed at Athens University of Economics and Business, IntelliSemantic, and
University of Ljubljana. Three new full nodes have also been deployed along with these
validator nodes. Besides that, a bridge node will be deployed University of Ljubljana
and soon will be added to iExec sidechain. Thus all the nodes are geographically scat-
tered over the different region in Europe. The details specification of those nodes have
been presented in tables 1 & 2, below. As the pilot has been developed by decentral-
izing the iExec Bellecour sidechain, therefore the new validator and full nodes are not
responsible for performing the transactions, therefore they have not directly perform
any transaction related tasks. Currently, all the transactions in iExec Bellecour is per-
forming by some other dedicated validator and full nodes. In order to achieve the fully
decentralized blockchain network, in future our plan is to extend the functionalities for
each validator and full nodes andallow themtoperformany transaction related tasks.

4.3 DEVELOPER’S LIABILITIES

Blockchain technology has advanced significantly in recent years. Blockchain has the
potential to become a key technology of digital transformation as B2B, and B2C busi-
nesses increasingly shift to a digital market [11]. In the anonymous world of cross-
border digital connectivity, it fosters trust and security for consumers, customers, trade
and business partners. However, many risks [12] are associated with any blockchain-
based ecosystem, which must be addressed before utilizing the blockchain technol-
ogy in various verticle business domains (e.g., health, education, finance and Govern-
mental). For that purpose, many European countries have already taken many reso-
lutions and passed various laws both on the National and European levels [13]. The
main objectives of adopting those laws are to provide proper guidance for attracting
private-sector investors, ensure consumer protection and citizens rights, and provide
safeguards against anticompetitive practices [13]. However, to make a sustainable, ro-
bust and more secure Blockchain ecosystem, it is necessary to define the strong poli-
cies for the Blockchain and Smart Contract developer [14]. Meanwhile, those policies
could implicitly help define the roles and responsibilities of different participants of the

65

Validator
Node Info

University of
Ljubljana IntelliSemantic

Athens
University of
Economics

and Business

Number of
deployed
node

1 1 1

Hosted
over Physi-
cal/Virtual
platform

Cloud: The
Academic and

Research
Network of
Slovenia
(ARNES)

Cloud: Linode
provider On-Premise

Month of
deploy-
ment

April 2022 May 2022 April 2022

Up-Time
for
Validator

6 months
(100%)

5
monthsc(100%)

8 months
(100%)

Hardware
description

8GB
RAM/100GB
Storage/4 CPU

cores

8 GB RAM/160
GB Storage/4
CPU cores

16GB
RAM/500GB
Storage (SSD)/
4 CPU cores

Software
dependen-
cies

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Number of
Blocks
Validated
(mined)

362879 280809 310869

Number of
Transac-
tion
executed

0 0 0

TABLE 1: VALIDATOR NODES RELATED INFORMATION.

66

https://www.arnes.si/about-arnes/
https://www.linode.com/
https://www.linode.com/
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard

Full Node
Info

University of
Ljubljana IntelliSemantic

Athens
University of
Economics

and Business

Number of
deployed
node

1 1 1

Hosted
over Physi-
cal/Virtual
platform

Cloud: The
Academic and

Research
Network of
Slovenia
(ARNES)

Cloud: Linode
provider On-Premise

Month of
deploy-
ment

February 2022 February 2022 April 2022

Up-Time
for Full
node

10 months
(100%)

7.5 months
(100%)

9 months
(100%)

Hardware
description

16GB RAM/
80GB Storage/
4 CPU cores

8 GB RAM/160
GB Storage/4
CPU cores

16GB
RAM/1TB

Storage (SSD)/
4 CPU cores

Software
dependen-
cies

Docker and
Docker-

Compose, PoA,
NetStat

Docker and
Docker-

Compose, PoA,
NetStat

Docker and
Docker-

Compose, PoA,
NetStat

TABLE 2: FULL NODES RELATED INFORMATION.

67

https://www.arnes.si/about-arnes/
https://www.linode.com/
https://www.linode.com/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/

Blockchain ecosystem [13]. In this section, wemainly focus on presenting the roles and
responsibilities of Blockchain and Smart Contract developers.

4.3.1 Role and Responsibilities of Blockchain Developer:

TheBlockchain developer has to performseveral activities tomake the ecosystemmore
sustainable and robust. They have to provide updates and fix the vulnerabilities or bugs
upon their detection. They are in charge of optimizing code and developing new func-
tionalities, which can be helpful for the solution provider.

4.3.2 Role and Responsibilities of Infrastructure Provider:

They are mainly responsible for delivering the infrastructure on which the Blockchain
network will run. They are also in charge of maintaining, operating and providing se-
curity solutions to maintain the network infrastructure’s resiliency. They also provide
services to solution providers to deploy their applications over the network infrastruc-
ture.

4.3.3 Role and Responsibilities of Solution Provider:

The solution provider is often considered the designer of the business solution for the
Blockchain ecosystem. They are mainly in charge of writing the business logic code,
which the Blockchain developer uses to develop the Blockchain ecosystem. Also, they
are the leading strategyprovider for defining the token storingmethodology andwallet
management. In addition, theyprovide various transaction-related services to theusers
and end users. The solution provider should be able to demonstrate measures and
controls in place to protect the information about the ownership of the assets, critical
related information and the real identity of participants.

4.3.4 Smart Contract Developer:

Themain challenge for Smart Contract developers is related to validating and auditing
the Smart Contract codebefore its deployment to theBlockchain ecosystem. Therefore
it is their responsibility to ensure the involvement of the employees from the business
side for testing the Smart Contracts in order to check the fulfilment of their business
purposes. Also, they need to properly define the controlling mechanism for automatic
transaction and app execution. Also, it is the liability of the Smart Contract developer

68

to build a proper resolution process in case of incidents for the execution of the com-
promised or malfunctioned Smart Contracts.

69

5 CONCLUSION

This document consolidates the outcomes of the twenty funded projects, which have
been developed between March 2021 to September 2022. This document will be
provided as the guideline material for developing the projects of Open Call #3 partici-
pants.

This deliverable thoroughly described the revised layered approach of the ONTOCHAIN
framework and different software solutions, which have been developed during the
Open Call #1 and Open Call #2. Mainly the structure of three previously envisioned
modules (Applications, Ontologies, and Distributed Ledgers) and their functionalities
have been modified and tuned to build within the ONTOCHAIN framework. More pre-
cisely, the development of the seven funded Open Call #1 and Open Call #2 projects
added new functionalities of the ONTOCHAIN framework and helped for developing
different components within the ONTOCHAIN framework. Moreover, documenting all
the related information of the different components and their interfaces in this deliv-
erable will help the Open Call #3 participants further extend those functionalities and
add applications to the ONTOCHAIN framework.

The functions described in this deliverable can be the basis of Call 3 developed appli-
cations, as e-commerce, copyright management and data marketplaces.

Finally, we have documented the specifications and requirements for an ONTOCHAIN
network supported by some ONTOCHAIN participants for deploying the pilot use-
cases/demonstrators, which will be used to have a better insight of the results of this
project.

70

REFERENCES

[1] Anthony Simonet-Boulogne et al. D3.4 FRAMEWORK SPECIFICATION. 2021.
url: https : / / ontochain . ngi . eu / sites / default / files / deliverables / D3 . 4 -
Framework-specification.pdf.

[2] Dominik Kuziski et al. “D4 Prototype Demonstration- Full Design Specification -
GraphChain”. In: Deliverable (2021).

[3] Roberto García et al. “D4 Prototype Demonstration- Full Design Specification -
CopyrightLY”. In: Deliverable (2021).

[4] Rebecca Johnson and Martin Martin Schaffner. “D4 Prototype Demonstration-
Full Design Specification HIBI”. In: Deliverable (2021).

[5] Caspar Roelofs et al. “D4 Prototype Demonstration- Full Design Specification -
OntoSSIVault”. In: Deliverable (2021).

[6] Junaid Arshad et al. “D4 Prototype Demonstration- Full Design Specification -
Reputable”. In: Deliverable (2021).

[7] Marcel Muller et al. “D4 Prototype Demonstration- Full Design Specification -
KnowledgeX”. In: Deliverable (2021).

[8] Giampaolo Bella et al. “D4 Prototype Demonstration- Full Design Specification
POC4COMMERCE”. In: Deliverable (2021).

[9] Adam Back et al. “Enabling blockchain innovations with pegged sidechains”.
In: URL: http://www. opensciencereview. com/papers/123/enablingblockchain-
innovations-with-pegged-sidechains 72 (2014).

[10] Abigael Okikijesu Bada et al. “Towards a green blockchain: A review of consen-
sus mechanisms and their energy consumption”. In: 2021 17th International
Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE. 2021,
pp. 503–511.

[11] Financial Conduct Authority. “Discussion Paper on distributed
ledger technology”. In: DP17/3 (April 2017)< https://www. fca. org.
uk/publication/discussion/dp17-03. pdf (2017).

[12] Harish Natarajan, Solvej Krause, and Helen Gradstein. “Distributed ledger tech-
nology and blockchain”. In: (2017).

[13] “Distributed Ledger Technologies & Blockchain - CSSF”. In: (2022). url: https:
//www.cssf.lu/wp-content/uploads/DLT_WP.pdf.

[14] Jenny Alexandra Triana Casallas, Juan Manuel Cueva-Lovelle, and José Ignacio
Rodríguez Molano. “Smart contracts with blockchain in the public sector”. In:
(2020).

71

https://ontochain.ngi.eu/sites/default/files/deliverables/D3.4-Framework-specification.pdf
https://ontochain.ngi.eu/sites/default/files/deliverables/D3.4-Framework-specification.pdf
https://www.cssf.lu/wp-content/uploads/DLT_WP.pdf
https://www.cssf.lu/wp-content/uploads/DLT_WP.pdf

	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	ONTOCHAIN Architecture
	ARCHITECTURE DESIGN
	COMPONENTS DESCRIPTION

	ONTOCHAIN GATEWAY API
	Service discovery
	Organization and user accounts
	Storage service results/output

	The ONTOCHAIN Pilot Network
	Foundation of Pilot Network
	Status of the ONTOCHAIN network
	Developer's Liabilities

	Conclusion

	REFERENCES

