
FINAL FRAMEWORK
SPECIFICATION

19/10/2023

Ref. Ares(2023)7118971 - 19/10/2023

Grant Agreement No.: 957338
Call: H2020-ICT-2020-1

Topic: ICT-54-2020
Type of action: RIA

D3.7 FINAL FRAMEWORK
SPECIFICATION

WORK PACKAGE WP 3

TASK T3.3

DUE DATE 31/08/2023

SUBMISSION DATE 19/10/2023

DELIVERABLE LEAD IEXEC

VERSION 0.9

AUTHORS Anthony Simonet-Boulogne (IEXEC)
Ambre Toulemonde (IEXEC)

REVIEWERS Vlado Stankovski (UL)
Thanasis Papaioannou (AUEB)

ABSTRACT This deliverable provides updated specification of i) the ON-
TOCHAIN framework and architecture compared to the ar-
chitecture described in the D3.4, ii) its components including
those developed by third parties during Open Call 3 and iii)
the ONTOCHAIN pilot deployment which will be used to eval-
uate the project results.

KEYWORDS Decentralisation, blockchain, trustworthy content, data trace-
ability, trustworthy knowledge exchange, privacy protection,
web semantic, service interoperability

Document Revision History

2

Version Date Description of change List of contributor(s)

0.1 17/08/2023 Initial draft Ambre Toulemonde,
Anthony

Simonet-Boulogne

0.2 25/08/2023 Section 2 Ambre Toulemonde

0.3 28/08/2023 Section 3 Ambre Toulemonde

0.4 29/08/2023 Section 4 Ambre Toulemonde

0.5 30/08/2023 Conclusion & Introduction Ambre Toulemonde

0.6 11/09/2023 Section 2 & Finalize Ambre Toulemonde

0.7 15/09/2023 Internal review Vlado Stankovski,
Thanasis

Papaioannou

0.8 27/09/2023 Include Thanasis comments Ambre Toulemonde

0.9 19/10/2023 Include Vlado comments & Finalize Ambre Toulemonde

3

Dissemination Level

Nature of the deliverable: PU

PU Public, fully open, e.g., web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ONTOCHAIN project and Commission Services

DISCLAIMER

The information, documentation and figures available in this deliverable are written
by the "Trusted, traceable and transparent ontological knowledge on blockchain ON-
TOCHAIN " projects consortium under EC grant agreement 957338, and do not nec-
essarily reflect the views of the European Commission. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible
for the use which may be made of the information contained therein. The information
in this document is provided as is and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability. Moreover, it is clearly stated that theONTOCHAINConsortium reserves
the right to update, amend ormodify any part, section or detail of the document at any
point in time without prior information.

The ONTOCHAIN project is funded by the European Unions Horizon 2020 Research
and Innovation programme under grant agreement no. 957338.

COPYRIGHT NOTICE

© 2020 ONTOCHAIN

This documentmay containmaterial that is copyrighted of certainONTOCHAINbenefi-
ciaries andmay not be reused or adaptedwithout permission. All ONTOCHAIN Consor-
tiumpartners have agreed to the full publicationof this document. The commercial use
of any information contained in this document may require a license from the propri-
etor of that information. Reproduction for non-commercial use is authorised provided
the source is acknowledged.

The ONTOCHAIN Consortium is the following:

4

Participant
number

Participant organisation name Short
name

Country

1 EUROPEAN DYNAMICS LUXEMBOURG SA ED LU

2 UNIVERZA V LJUBLJANI UL SI

3 IEXEC BLOCKCHAIN TECH IEXEC FR

4 INTELLISEMANTIC SRL IS IT

5 ATHENS UNIVERSITY OF ECONOMICS AND
BUSINESS – RESEARCH CENTER

AUEB EL

6 ELLINOGERMANIKO EMPORIKO & VIOMICHANIKO
EPIMELITIRIO

GHCCI EL

7 F6S NETWORK LIMITED F6S IE

5

EXECUTIVE SUMMARY

This document is deliverable "D3.7 Final Framework Specification" of the ONTOCHAIN
project fundedunder theHorizon2020Research & Innovation program "ONTOCHAIN–
Trusted, traceable and transparent ontological knowledge on blockchain".

The framework specification was produced by Task 3.3, after the execution of ON-
TOCHAIN Open Call #1 "Research", Open Call #2 "Protocol Suite & Software Ecosystem
Foundations" andOpenCall #3 "Applications & Experimentation"; it batches the results
of the fourteen projects funded and executed between September 2022 and August
2023 and append these outcomes to the infrastructure design provided in the D3.4
deliverable.

The framework specification defines software components that will compose the ON-
TOCHAIN ecosystem, the application programming interfaces (APIs) that will allow
these individual components to communicate, the developed Gateway APIs enabling
to have a single entry point to use these individual components.

This document can be serve as guideline for future developers and users willing to use
the ONTOCHAIN infrastructure.

6

TABLE OF CONTENTS

TABLE OF CONTENTS .. 7

LIST OF FIGURES.. 8

LIST OF TABLES.. 9

1 INTRODUCTION.. 11

2 ONTOCHAIN ARCHITECTURE.. 12

2.1 Architecture design.. 12

2.2 Components description .. 15

2.3 ONTOCHAIN Interoperability . 43

3 ONTOCHAIN GATEWAY API. 45

3.1 Service Discovery APIs . 46

3.2 Organization and user accounts APIs . 47

3.3 Data Storage APIs. 48

4 PILOT NETWORK.. 51

4.1 Node deployment process. 51

4.2 Status of the ONTOCHAIN network .. 54

5 CONCLUSION .. 57

7

LIST OF FIGURES

FIGURE 1: ONTOCHAIN ARCHITECTURE AND COMPONENTS DIAGRAM. 13

8

LIST OF TABLES

TABLE 1: VALIDATOR NODES RELATED INFORMATION.. 55
TABLE 2: FULL NODES RELATED INFORMATION.. 56

9

ABBREVIATIONS

API Application Programming Interface

AWS AmazonWeb Services

DAO Decentralized Autonomous Organization

DID Decentralized IDentity

DLT Distributed Ledger Technology

ERC Ethereum Request for Comments

EVM Ethereum Virtual Machine

NGI Next Generation Internet

OC Open Call for participation

SDK Software Development Kit

SSI Self-Sovereign Identity

VC Verifiable Credential

W3C World Wide Web Consortium

10

1 INTRODUCTION

This document presents the final version of the ONTOCHAIN framework. It combines
the first version of the ONTOCHAIN framework specification initially designed before
Open Call 1 (OC1) and the revisions made during the execution of the third party
projects funded under Open Call 1, Open Call 2 (OC2) and Open Call 3 (OC3).

The main objective of this deliverable is to provide the final specification of the ON-
TOCHAIN framework that can be used as a commonguidelines and recommendations
to futuredevelopers anduserswilling to integrate theONTOCHAIN services in their own
project.

This document offers an update on the D3.5 deliverable, describing the additional fea-
tures stemming from the achievements of the OC3 projects. It’s important to note that
a in-depth overview of the functionalities delivered by OC1 and OC2 solutions to the
ONTOCHAIN infrastructure is not reiterated in this deliverable, as this information is de-
tailed in the D3.4 and D3.5 deliverables.

The rest of this deliverable is organized as follows:

Chapter 2, provides the whole ONTOCHAIN architecture based on the D3.5 deliver-
able with the updated functionalities offered by the OC3 projects. The architecture
defines the functionalities and applications realized by all ONTOCHAIN projects, col-
lectively representing the core essence of the ONTOCHAIN vision.

Chapter 3, presents application programming interfaces for the ONTOCHAIN
ecosystem, i.e. the APIs that have been implemented by an OC3 project and that
will be presented to application developers and users willing usingONTOCHAIN ser-
vices. These APIs also defines primitives useful to developers of ONTOCHAIN, e.g. for
integrating services and for implementing interoperability between services.

Chapter 4 describes the update of the pilot use-case, specifically the node deploy-
ment process and the current specification of these nodes. There have been no sig-
nificant changes to the pilot network and the detail can be found in the D3.4 and
D3.5 deliverables.

Chapter 5 provides concluding remarks for this deliverable.

11

2 ONTOCHAIN ARCHITECTURE

The ONTOCHAIN software ecosystem consists of a novel protocol suite grouped into
high- level application protocols, such as data provenance, reputation models, decen-
tralised oracles, market mechanisms, ontology representation and management, pri-
vacy aware and secure data exchange, multi-source identity verification, value sharing
and incentives and similar, and core protocols that include smart contracts, authorisa-
tion, certification, event gateways, identitymanagement and identification, secure and
privacy aware decentralised storage, data semantics and semantic linking.

2.1 ARCHITECTURE DESIGN

Since the D3.5 deliverable, the architecture design has remained largely unchanged.
Indeed, a modular approach has been implemented to ensure scalability, openness
and high performance. The ONTOCHAIN ecosystem is structured with four layers as
depicted in Figure 1: APPLICATIONS, ONTOLOGIES and DISTRIBUTED LEDGER on the
left side that each builds on the functionalities offered by the lower layer, and INTER-
OPERABILITY MODULES AND PROTOCOLS that is a cross-layer focusing on interfaces
and interoperability.

As a final result, Figure 1 also illustrates the projects actively contributing to the devel-
opment of modules:

OC1 for building the foundations of the ONTOCHAIN ecosystem.

OC2 integrated the outcomes ofOC1 and implemented theONTOCHAIN infrastruc-
ture.

OC3 completed the missing building block and exploit the ONTOCHAIN infrastruc-
ture in real-life use cases.

Some of the modules in these layers have been modified to take into account the
progress made during the execution of OC2 and OC3.

2.1.1 INTEROPERABILITY MODULES AND PROTOCOLS LAYER

Core protocols The Identity Management and ONTOCHAIN API Gateways modules
have not be modified and aim to deliver the same objective as described in the D3.5
deliverable.

The Authorization and Certification modules have been merged to develop SSI solu-

12

FIGURE 1: ONTOCHAIN ARCHITECTURE AND COMPONENTS DIAGRAM.

tions that ensure compliant data with relevant standard (e.g. W3CDID) and regulation
(e.g. GDPR).

The module previously named ’Crosschain Transactions’ has been renamed to ’Cross-
chain Interoperability’ to provide amore precise description of its unchanged objective
as defined in the D3.5 deliverable: facilitating the interoperability between two rela-
tively independent Blockchains.

The Decentralized Storagemodule has been removed, as it ismore relevant and appro-
priately placed within the DISTRIBUTED LEDGER layer.

The additional two modules are the following ones:

Privacy-aware Data Processing: this focuses on ensuring data privacy and security.
It allows for the processing of sensitive data while preserving user privacy.

Data Management: this is responsible for efficiently storing, retrieving, and organiz-
ing data. It enables the secure and decentralized storage of data.

Application protocols The Secure data exchange andData Provenancemodules have
not be changed.

The modules previously named ’Reputation Models’ and ’Semantic Match-making
have been renamed to ’Reputation Management’ and ’Data Matchmaking’ respec-
tively. Their objectives remain unchanged as detailed in the D3.5 deliverable.

The Multi-source Identity Verification module has been removed, as the projects com-

13

pleting the Authorization and Certification module have successfully achieved the ob-
jective of registering and verifying individual digital identities of physical objects via
trusted data frommultiple sources.

The Decentralized Autonomous Organization has been developped as an application
use-case by a OC3 third party and thus placed in the APPLICATION layer.

Thus, these two additional modules have been added to fulfill the essential services
required for this layer:

Market Mechanism: this provides the functionalities for decentralized markets and
trading platforms. It facilitates the creation of smart contracts and tokens, allowing
for peer-to-peer trading, auctions, and various market mechanisms.

Metadata Management: this involves the organization and retrieval of additional
information about transactions, assets, or records. It enhances the usability and
searchability of data.

2.1.2 DISTRIBUTED LEDGER LAYER

This layer remains largely unchanged. The module previousouly named ’Digital Cur-
rency Tokenomics’ has been changed to ’Tokenization & Tokenomics’ to be more pre-
cise about it unchanged objective as defined in the D3.5 deliverable. The name and
objective of the other modules are the same as defined the D3.5 deliverable.

2.1.3 ONTOLOGIES LAYER

The Data Provenance, Semantic Linking and Ontology Representations modules re-
main unchanged. The module previously named ’Semantic Matchmaking And Rea-
soning’ has been renamed to ’OntologyManagement’ in order to comprisemore func-
tionalities than finding connection between items. Indeed, the module includes the
the following ones:

Ontology Management: this concerns the creation, organization, and mainte-
nance of ontologies, which are structured representations of knowledge or domain-
specific concepts and their relationships. The primary purpose is to define a shared
vocabulary and a formal model for a specific domain.

14

2.1.4 APPLICATION Layer

This layer was the focus of OC3 and has been extended by the projects funded during
this open call. Thus, 9 modules have been defined and successfully implemented by
these OC3 solutions:

Healthcare: this aims to securely store and manage patient records, ensuring data
integrity, privacy, and interoperability among different healthcare providers. It can
also facilitate drug traceability, clinical trials, and health research.

Public Services: this helps to facilitate and enhance transparency and efficiency in
both personal and industrial operations.

Digital Content: this focuses on protecting intellectual property rights and manage
digital content distribution. It provides content creators with a secure and transpar-
ent way to manage copyrights, royalties, and content provenance.

Credibility Management: this helps to verify and establish trust in various contexts,
such as certifications, to prevent fraud and to improve the credibility of online infor-
mation.

Marketplace: this enables secure peer-to-peer transactions, reducing the need for
intermediaries. They are used in areas like e-commerce, supply chainmanagement,
and decentralized finance (DeFi).

Distributed Logistic: this enhances supply chain management to track the move-
ment of goods while improving traceability, reducing fraud, and ensuring the au-
thenticity of products.

Automotive: this helps to record and manage vehicles history in order to improve
their maintenance.

Real Estate: this simplifies aggregation, normalization and secures online and offline
data storage of real estate data.

Decentralized Autonomous Organization (DAO): this module can run a Blockchain
protocol entirely and autonomously with the help of smart contracts. Thus, it cir-
cumvents the need for human intervention or centralized coordination and helps to
build a trustless system.

2.2 COMPONENTS DESCRIPTION

The systemarchitecture described in the previous section has been actualized through
the integration of software components developed by participants selected during the

15

three ONTOCHAIN open calls.

Over the course of the last year, the OC3 third parties participated to complete not only
their initial layer, APPLICATIONS, but also two other layers, DISTRIBUTED LEDGER and
INTEROPERABILITY MODULES AND PROTOCOLS. This section introduces these new
components of the ONTOCHAIN infrastructure provided by the OC3 projects.

2.2.1 Babelfish

Description BABELFISH proposes to describe services on a technical, semantic, and
governance layer and will implement a component that uses such descriptions to
translate interfaces (APIs), data, and data agreements from a foreign (and maybe pro-
prietary format) to an interoperable format understood by the recipient. A registry
maintains a list of all services and thus spans up an interoperable data space.

Application Programming Interfaces BABELFISH completes the ONTOCHAIN API
Gateways module by implementing Gateway API for developers and users of ON-
TOCHAIN services, already introduced in Section 3 of the D3.5 deliverable. The detail
of this APIs is provided in Section 3. Three additional building blocks have been devel-
oped to provide necessary functions for applications in the ONTOCHAIN environment
and beyond:

Identity Management: provide identities for organisations, users, and datasets us-
ing decentralised identifiers (DIDs) and use Verifiable Credentials for attestation.

The did:oyd method1 is an example of a non-blockchain based DID method and pro-
vides a self-sustained environment formanaging digital identifiers: it cryptographically
links the identifier to the DID Document and uses linked provenance data in a public
log to ensure resolution to the latest valid version of the DID Document.

Information about DIDs, DID Documents and associated logs are stored in an OYDID
repository. This repository is a centralised but can be duplicated to other repositories,
providing decentralization. Anyone can host a repository and it is up to the DID owner
to select a trusted provider. At any time, the did:oyd method’s decentralization allows
at any time seamless transition to other repositories.

The following resources documents the improvements of the did:oyd DIDmethod:

updates and improvements as commits on the OYDID Github repository: https://
github.com/OwnYourData/oydid

implementation and documentation of DID Delegation in the following blog
post that was picked up on Twitter and generated some interest: https://www.

1W3C conform DIDmethod specification: https://ownyourdata.github.io/oydid/

16

https://github.com/OwnYourData/oydid
https://github.com/OwnYourData/oydid
https://www.ownyourdata.eu/en/did-delegation/
https://www.ownyourdata.eu/en/did-delegation/

ownyourdata.eu/en/did-delegation/

did:oyd is now the only DID method that covers 100% of the W3C DID Test Suite:
https://github.com/w3c/did-test-suite/pull/219

as part of the compliance work we developed the online DID Lint Service: https:
//didlint.ownyourdata.eu

Thebenefits of did:oydDIDmethod are the following ones: a lightweight and standard-
conform implementation, a maximum of privacy with local deployment and a Native
integration with Semantic Container storage provider.

Data Agreements: legally binding contracts that stipulate the terms and conditions
for sharing, accessing, and using data between two or more parties to ensure trans-
parency and mutual consent in the data exchange process

Data agreements set the usage policies for data access, ensuring that all parties in-
volved adhere to the agreed-upon rules and regulations. To facilitate data sharing in
a more structured and well defined way a vocabulary or ontology, a Domain Specific
Data Agreements (D2A) is used. Such agreements allow organisations to communi-
cate through an intermediary the allowed usage policies for data access within a spe-
cific domain. The intermediary has then all the information to match and validate the
usage policy in order to create a Domain Specific Data Disclosure Agreement (D3A).

One of the key technologies enabling data agreements are Verifiable Credentials (VCs).
VCs are digital representations of information that a verifier might require, such as the
age or the citizenship of an individual. In the context of data agreements, a VC could
be created to represent the agreement itself. This VC would contain the details of the
agreement and could be cryptographically signed by the parties involved. This ensures
the authenticity and integrity of the agreement, providing a secure foundation for data
exchange.

Model Management: describe data structures and use the information for data cap-
ture (with HTML forms), validation (based on SHACL1), and transformation

The Semantic Overlay Architecture (SOyA) is a lightweight, semantic-web based ap-
proach to describe data structures in simple terminology2. This description includes
groups of data records with the same attributes, references between data records, and
additional information in the form of overlays for these data structures.

At the core of the SOyA approach is the SOyA structure, a YAML-based data model for
describing graph data, which consists of one or more soya:Base, that represent RDF
classes and their properties, and zero or more soya:Overlay, that provides additional
information and context to soya:Base as well as processing definitions. Furthermore, to

2W3C conform specification: https://ownyourdata.github.io/soya/

17

https://github.com/w3c/did-test-suite/pull/219
https://didlint.ownyourdata.eu
https://didlint.ownyourdata.eu
https://ownyourdata.github.io/soya/

support developers in conducting themost common data processing for graph data, a
number of predefined soya:Overlay have been defined such as soya:AnnotationOverlay
for data model description in human readable terms and soya:ValidationOverlay for
constraint checking.

It is important to note that SOyA has the same flexibility as RDF (Resource Description
Framework) to describe data structures, i.e., any kind of data or documents can be de-
scribed. With SOyA it is possible to register any current and future datamodels handled
by ONTOCHAIN services and applications.

The improvements of SOyA are documented in the following resources:

updates and improvements as commits on the SOyA Github repository: https://
github.com/OwnYourData/soya

specifically a new function for the automated creation of transformation over-
lays based on alignment information was created and demonstrated in the fol-
lowing tutorial: https://github.com/OwnYourData/dc-babelfish/tree/main/tutorial/
5_Transformations

using the functionality of validation overlays the DID Lint Service was made possi-
ble and was eventually integrated into the stable version of the UniResolver at the
Decentralised Identity Foundation: https://resolver.identity.foundation/

2.2.2 Convex Global DLT

Description Convex provides an energy efficient and scalable decentralised ledger
Technology (DLT) on a permissionless public network. It has been designed as a sub-
strate for decentralised economic transactions and smart contracts for real-time value
exchange. It supplies documentation, ecosystem services, training and API implemen-
tation support for selected ONTOCHAIN use-case partners. The network operates with
any number of peer operators that confirm the global state in real time at thousands
of transactions per second.

Application Programming Interfaces Convex Global DLT enables to strengthen the
decentralized aspect of the ONTOCHAIN ecosystem and add a new DLT into the
Distributed Ledger module. The following API for SDK modules have been imple-
mented:

Convex Shell

Initially a background component, Convex Shell is an application for running Convex
Lisp in the terminal. At the core, Convex Lisp is their Smart Contract programming lan-
guage. This tool extends the Convex Virtual Machine (execution engine) to turn this

18

https://github.com/OwnYourData/soya
https://github.com/OwnYourData/soya
https://github.com/OwnYourData/dc-babelfish/tree/main/tutorial/5_Transformations
https://github.com/OwnYourData/dc-babelfish/tree/main/tutorial/5_Transformations
https://resolver.identity.foundation/

language into a scripting language offering all the features commonly needed for de-
velopment and network operations. Their core technology being written in Java, this
tool allows Convex developers to indirectly access this tooling without any JVM experi-
ence.

Most of the other modules described in this section will be presented as extensions to
Convex Shell, requiring only knowledge of Convex Lisp, meaning theymaximise access
and reusability of those deliverables with respect to users having an interest in Convex
and Convex Lisp.

STDIO Interface - Convex Shell extension

Integration of their tooling with other environments and languages has been a recur-
ring topicwhen discussingwith other ONTOCHAINprojects. While Convex Shell can be
used as a standalone application, this module offers a simple way of accessing it from
any programming language by using conventional inter-process communication.

Unit Testing Framework - Convex Shell extension

Testing smart contracts often involves a subpar experience, such as testing Solidity con-
tracts fromJavascript. In contrast, thismodule offers a simple unit testing library so that
tests can be fully written in Convex Lisp, without involving any third-party layer, min-
imising context switching and maximising code reuse. It also used to test modules
from this project written in Convex Lisp.

Etch Stress Testing - Convex Shell library

Etch is the companion database for the Convex Virtual Machine, optimised for Convex
data. This is what peer nodes use to persist the global state of the network as well as
blocks of transactions and related data. Convex Shell has full support for Convex data
generators, which can be easily composed for generating any data in a random but
controlled way. This module builds on those data generators and offers a framework
for studying the performance of Etch by generating random data andmeasuring write
speed. It also performs an integrity check, ensuring that the persisted data can be read
back.

Peer Deployer - Convex Shell library

Originally, there were already several ways for starting a Convex peer node for process-
ing network transactions. For instance, see:

1. https://convex-dev.github.io/convex/convex-cli

2. https://convex.world/cvm/peer-operations

Thismodule offers functions automating those stepswhen settingupnetworks, greatly

19

https://convex-dev.github.io/convex/convex-cli
https://convex.world/cvm/peer-operations

reducing the complexity via 2 simple functions run with the Convex Shell.

Simulation Scenarios - Convex Shell library

Preparing transactions, such as for the purpose of benchmarking or simulation, can be
repetitive and tedious to dowithout introducingbias. Building on theConvex data gen-
erators, this module offers a straightforward abstraction for generating random trans-
actions that follow awell-known scenario, in a fully reproducible way. Thismodule is an
important prerequisite for simulating realistic scenarios.

The first set of scenarios aims to test common constructs that either have comparable
implementations on other mainstream platforms or could be written from scratch in
a straightforward way. The second set of scenarios aims to represent Convex-specific
features, either unique to Convex or not commonly available on other L1 platforms.
Given how our generative tooling operates, all those scenarios are fully reproducible.
Given the same set of parameters for a scenario, the exact same transactions will be
generated for those parameters.

Client Load Generator - Convex Shell library

Since Convex Shell offers access to our binary client, used for transacting over Convex
networks, this module provides a Client Load Generator able to connect to a running
network and generate transactions according to Simulation Scenarios.

The Client Load Generator can be bucketed as to run several instances against a net-
work. This will spread load generation against all Client Load Generator instances that
will typically run on differentmachines. This avoids biasing results in case of Client Load
Generators struggling to generate the appropriate load due to the technical limitations
of a single machine.

Local Simulation Runner - Convex Shell library

In order to test the tooling exposed above and validate the design before extensive
cloud simulation, this module provides a straightforward way for starting a local net-
work on a single machine according to a scenario and running a load against it.

Thismodule does not collect any othermetrics beyond the finality results outputted by
the Client LoadGenerator. Its primary goal is to ensure that all the deliverables required
for cloud simulations can indeed fit together and behave as necessary.

AWS Simulation Orchestrator - JVM library written in Clojure

Culmination of this project, thismodule is a complex combination of previousmodules
that fully automates the deployment of a test network across data centres using AWS
CloudFormation, via a single function managing the whole process of:

20

Deploying EC2 instances for peers, using the Peer Deployer, and bootstrapping the
network

Deploying EC2 instance for Client Load Generators

Running a Simulation Scenario

Collecting all metrics

Shutting down the test network automatically after a given interval of time

Collected metrics and data, common to all scenarios, are:

Logs of all peer servers

Logs of all Client Load Generators

Finality statistics (delta between sending a transaction and getting a result con-
firmed by consensus), in milliseconds:

Average

Standard deviation

Quartiles

Network statistics based on network data retrieved from an Etch instance:

Disk usage (size of the instance file)

Number of blocks

Consensus information specific to Convex: Proposal Point and Consensus
Point

Number of transactions confirmed by consensus

Block size quartiles (number of transactions per block)

Average Blocks per Second

Average Transactions per Second

Machine statistics for peer instances, according to metrics retrieved from AWS
CloudWatch:

Quartiles of CPU utilisation (percent)

Quartiles of memory usage (MB)

Total volume of inbound network data (GB)

21

Total volume of outbound network data (GB)

Average inbound network speed per peer (MB/s)

Average outbound network speed per peer (MB/s)

This module can also interface with peers deployed externally. This will be the case for
their lab experiments which will consist of running such a test network as well as a
physical machine for which we can measure energy consumption.

2.2.3 DLMD

Description The Decentralized Last-Mile Delivery (DLMD) solution revolutionizes the
last-mile delivery ecosystem by integrating blockchain technology with a user-
centered application. The solution is designed to enable efficient, transparent, and
secure parcel transactions, utilizing parked vehicles as delivery points. This innova-
tive approach addresses the challenges of conventional delivery systems, offering im-
proved service for delivery companies, vehicle owners, andparcel senders and receivers.
Through its unique NFT-based parcel identification and vehicle access system, DLMD
ensures the seamless transfer of parcels while optimizing delivery times and costs.

Application Programming Interfaces DLMD provides specification for the SDK and
the smart contract, composed of the following modules.

Module Authentication The module provides authentication and authorization
using DID, by rewriting a part functionality of the Gimly module.

createEncryptedWallet(pin) Creates an encryptedwallet and stores its data in secure
storage, the user is then prompted to save the mnemonic phrase offline.
createDid() Creates DID and stores it in secure storage.

getUserDid() Gets the users DID.

sign(message) Signs a message using the users wallet.

Module Login and registration This module provides the ability to register and
login users. When registering or logging in with a wallet, users need to call /wallet-
auth-message endpoint of this module in order to obtain data required for signa-
ture and timestamp arguments. Endpoints: https://<base_uri>/auth/

/register/walletPOST Creates a new user account and returns login data.

22

/login/walletPOST Logs an existing user in.

/wallet-auth-msg)GET Provides a message for the user to sign, as well as a times-
tamp parameters needed to perform a sign in.

ModuleUser Thismodule handles user data. Endpoints: https://<base_uri>/users.

/meGET Returns data associated with currently logged in user.

/updatePUT Updates data associated with currently logged in user, and returns
updated object.

/detailsGET Returns detail data associated with currently logged in user.

/detailsPOST Updates and returns detail data associated with currently logged
in user.

/registered-walletsGET Registeredwallet addresses. Used to limit themint ability
on the SC.

Module Box Handles creation and management of boxes. Endpoints:
https://<base_uri>/box.

/createPOST Creates a box and returns its data as a json object.

/<id>/updatePATCH Updates the box and returns its updateddata as a json object.

/<id>/permissionGET Can user access the box.

/GET Lists boxes that belong to the currently logged in user.

/dataGET Data about the specific box.

/connectPOST Permission data after the box has been connected.

ModulePermission system Thismodule controlswhether auser is allowed toopen
the box or not. Endpoints: https://<base_uri>/box.

/box/:id/access-keyGET Generates and returns an access key for the box, based
on the challenge provided.

/box/:id/permission/setPOST Grants the user the given permission for the given
box.

/box/:id/permission/revokePOST Revokes the user the given permission for the
given box.

23

ModuleReputation system Thismodule handles rating of courier users and boxes.
Upon receiving a new rating, this module also recalculates users or box average
rating and updates the cached rating on the User or Box model accordingly. End-
points: https://<base_uri>/reputation.

rate-transactionPOST Creates a rating of the interaction. For each parcel, two
ratings are necessary one for the courier, and one for the box.

/averageGET Calculates average rating for a given recipient, based on rating type
and recipients ID.

/:walletGET Calculates average rating for a given recipient, based on wallet ad-
dress.

Module Parcel transaction This module handles parcel creation and later trans-
actions, such as depositing the parcel into a box, or withdrawing the parcel from a
box. Endpoints: https://<base_uri>/parcel.

/GET Lists parcels matching the filter.

/:idGET Returns data for a given parcel.

/createPOST Creates a new parcel based on user and box IDs, and returns it as a
json object.

/create/by-walletPOST Creates a new parcel based on wallet addresses, and re-
turns it as a json object.

/update/:idPATCH Updates a parcel and returns updated data as an object.
Where identifiers are necessary, this request uses database IDs for this purpose.

update/by-wallet/:nftIdPATCH Updates a parcel and returns updated data as an
object. Where identifiers are necessary, this request uses database IDs for this pur-
pose. Location can also be updated through location API.

/:id/depositPOST If conditions for parcel deposit are met, it marks the parcel as
deposited, revokes couriers access to the box, and grants the package recipient the
access to the box. If conditions for deposits are not met, an appropriate error is
returned.

/:id/withdrawPOST If conditions for parcel withdrawal aremet, itmarks the parcel
aswithdrawnand revokes the recipient’s access to thebox. If conditions for deposits
are not met, an appropriate error is returned.

/:id/locationGET Returns parcels location.

24

Module Location Location API creates and updates locations. Endpoints:
https://<base_uri>/location.

/createPOST Creates a new location and returns the created location.

/:id/updatePOST Updates an existing location and returns updated data.

/box/:boxId/precisePOST Creates a precise location for the given box.

/box/:boxId/precisePATCH Updates box precise location and returns updated
data.

/box/:boxId/preciseGET Gets locations precise location.

Module Parcel NFT smart contract (ERC-721) Parcel NFT smart contract extend
the standard NFT SC by storing the following data: wallet address of the current
owner of the parcel and handle (link) to the data providing encrypted metadata
(unique for each transaction). Extended and additional functions are the following
ones.

mint Provides mint - NTF construction functionality.
eligibleToWrite Checks of the user has permissions to write to the SC.

transferOwnership Transfers the NFT ownership.

burn Remove the existence of the NFT.
getTransactionIndex Unique transaction index.

Module Reputation system smart contract It will enable reputation manage-
ment for the users.

evaluateUser Provides functionality to evaluate the user.
getScore Returns the score of the user.

2.2.4 Recheck Green Box

Description TheReCheckGreenBox is a digital building logbook that aggregates, nor-
malizes and secures online and offline data about buildings. The solution aggregates
different types of documents, certificates, etc, linked to the life cycle of a building start-
ing with design plans, execution plans and reports and maintenance protocols. The
data is stored in a semantic data lake for further usage and querying. The data origin,

25

authenticity and its properties are protected by blockchain records.

Application Programming Interfaces Recheck Green Box provide the API specifica-
tion for REST Services, divided into the two following modules:

Module Remote Module Monitoring (RMM) The API service is used by remote
installedmodules and Aggregator service. Modules are preconfigured to send their
sensing data to that api service on a regular basis.

/{token}POST Identify provider, manufacturer and model. If they are valid the
service will store the sensing data.

/lastDataGET last sensing data for each stored module

Module Graph Query API The Graph Query API is designed to serve stakeholders
to integrate the logbook for the purpose of direct data extraction and as a connec-
tion data source for business intelligence reporting. /asset/createPOST Used by

the aggregator and authorised services / users to push to DKG new data or update
existing data of the digital asset with assertions.

/graph/queryPOST Authorised users (stakeholders) provide SPARQL query to get
the desired information as RDF statements for BI and reporting.

/graph/query/organization/measurementGET Authorised users (stakeholders) get in-
formation for organization building devices with measurements for specific time
period.

2.2.5 My3Sec

Description My3Sec is a comprehensive solution designed to enhance the efficiency
and transparency of remote work processes. Developed with a focus on the use cases
of proving skills, seeking good candidates, and tracking workers’ growth for a project,
My3Sec is a fully decentralized, transparent, and efficient system for tracking people’s
career growth and improving employers’ project management through a verified skill-
oriented approach. With its user-friendly Web3 frontend, robust contract architecture,
and democratic governance system, My3Sec is poised to revolutionize the way orga-
nizations and individuals approach skill verification, candidate search, and career pro-
gression.

Application Programming Interfaces My3Sec provides the different modules for
My3SecHub Smart Contract. It manages user profiles and organizations, interacting

26

with other contracts like My3SecProfiles, EnergyWallet, TimeWallet, and Organization.
The modules for My3SecHub Smart Contract are given in the following parts.

Module Contract Setup These functions are used for setting up the My3SecHub
contract by linking it to the necessary contracts for profiles and wallets.

setMy3SecProfilesContract(address contractAddress) Link the My3SecProfiles con-
tract with theMy3SecHub contract. Only the contract owner can execute this func-
tion.
setEnergyWalletContract(address contractAddress) Link the EnergyWallet contract
with the My3SecHub contract. Only the contract owner can execute this function.
setTimeWalletContract(address contractAddress) Link the TimeWallet contract with
the My3SecHub contract. Only the contract owner can execute this function.

Module Profile Management These functions provide an interface to interact with
profiles and the associated energy tokens.

getDefaultProfile(address account) Returns the default profile of the given user.

getProfile(uint256 profileId) Return the profile with the given profile ID.

setDefaultProfile(uint256 profileId) Set the given profile as the default profile for
the sender.
createProfile(DataTypes.CreateProfile calldata args) Create a new profile with the
given metadata URI and assigns it an initial energy balance.
giveEnergyTo(uint256 profileId, uint256 amount) Transfer energy from the sender’s
default profile to the given profile.
removeEnergyFrom(uint256 profileId, uint256 amount) Remove energy from the spec-
ified profile and gives it to the sender’s default profile.

ModuleOrganizationManagement These functionsprovide an interface forman-
aging organizations.

getOrganizationCount() Return the total number of registered organizations.

getOrganization(uint256 index) Retrieve the address of the organization at the given
index. Reverts if the index is out of bounds.
createOrganization(string calldata metadataURI) Create a new organization with the
given metadata URI and assigns ownership to the sender.

27

registerOrganization(address organizationAddress) Register an existing organization
in the contract. Reverts if the organization is already registered, if the address
doesn’t point to a contract, or if the contract doesn’t comply with the IOrganiza-
tion interface.
joinOrganization(address organizationAddress) Let a user join an existing organiza-
tion. The sender’s default profile will be used.
leaveOrganization(address organizationAddress) Let a user leave an organization. The
sender’s default profile will be used.
logTime(address organizationAddress, uint256 projectId, uint256 taskId, uint256 time)
logs time spent by a user on a specific task in a project. It uses the sender’s default
profile, removes the specified time from the user’s time wallet, and updates the
task’s total time in the organization.

2.2.6 ecOS

Description ECOS is the full stack platform for the Energy Community, the plat-
form enables a transparent, accountable system capable of creating economic value
through Token Model for all the users involved in the energy community.

Application Programming Interfaces ecOS is built on top of their existing IoT layer.
They provide complete API definitions in two distinct set of APIS:

The IoT Layer API: https://documentation.apio.network/api

The ecOS API: https://app.swaggerhub.com/apis-docs/fatmatto/ECOS/1

In the following paragraph we include just the ecOS API that are composed by Energy
Data Module and Blockchain Module.

Module Energy Data and Blockchain In the Blockchain module, only transac-
tions essential to the operation of the ECOS infrastructure are included. For all GET
type functions related to the contract (such as retrieving the Token Balance of an
account), ethers.js is used directly by loading the contract’s ABI (Application Binary
Interface). For all other more generic functions related to the Blockchain (such as
the list of transactions), the capabilities of ethers.js are utilized. This approach en-
sures a streamlined, secure and effective way of interacting with the underlying
blockchain.

/projects/PROJECT_ID/communitiesPOST Creates a new community. This operation
requires admin privileges.

28

https://documentation.apio.network/api
https://app.swaggerhub.com/apis-docs/fatmatto/ECOS/1

/projects/PROJECT_ID/users/registerPOST Register a new user to the platform. Not
an admin, but a regular end user of ecos, able to use the mobile app. The endpoint
will start a registration flow.

/projects/PROJECT_ID/users/authenticatePOST Authenticates the end user.

/projects/PROJECT_ID/wallet/initPOST Initializes the wallet of the end user. The
endpoints requires that the user provides parameters for the wallet initializations,
and the address. This will link the user on the platform to the wallet.

/projects/PROJECT_ID/communities/COMMUNITY_ID/overviewGET Returns general infor-
mation about the community and about the contribution of the current user to the
community and its consumption data.

/projects/PROJECT_ID/communities/COMMUNITY_ID/analysisGET Goes deeper into the
details of energy consumptiongeneratedby the current user, returning a drill down
of the consumption from grid, storage and the savings.

/projects/PROJECT_ID/incentive/setGET Sets the specified incentive for a given
user. This operation requires admin privileges.

2.2.7 DEFev

Description DEFev project, with its blockchain-based solution, resolves interoperabil-
ity and actor class complexity issues by providing a common infrastructure that inte-
gratesdifferentparties into oneunified ecosystem. The charging stations, through their
IoT server, have a digital twin in the blockchain. This allows tomanage amicro charging
operator as easily as a user, opening the path to seamless peer-to-peer (P2P) charging.
Furthermore, the on-chain data management ensures traceability of transactions in a
manner that ensures trustworthiness and transparency and grows the reputation of
each entity.

Application Programming Interfaces DEFev provides the following modules:

Module DAPP DEFev
/identified/select-evse/map-selector Displays themapwith the location of the user
and all the valid EVSE as markers.
/identified/wallet-management Displays the tokens of the user (no use of coins in
Bellecour).
/identified/transaction-history Displays the history of payments(charges).

Choose EVSE - - Scan the QR Code or - Go to the map page.

29

Detail EVSE Displays the information page of the EVSE. Has a button to show the
comment page.
Charge EVSE Asks for duration and displays the price of the transaction. If ok, sub-
mits the charge request to the Pilot. Once the charge is on, we can interrupt it with
a button. Once the charge is finished, we can post a score in the Reputation.
my Account Displays the address currently connected and the settings the user de-
fined.
OC1 Price Oracle Smart Contract Displays the current price index and its description.
Ex: Prices are in EURper kWh. This helps themember define hismargin. FR1 : 0,14;
Regulated Price per kWh for individual in France. FR2 : 0,28; Regulated Price per
kWh for Corp in France. FR3 : 0,37; Spot price in France.

Module Content Server This is the public IPFS service, or any other compatible
storage service. It is only read by the Dapp when displaying information about the
EVSE.

Module EVSE Address Book (Main Smart Contract)
registerEVSE Adds the location of the EVSE with price and link to the rest of the
information.
getEVSE Returns all available info of the EVSE.

UnableEVSE/disableEVSE Makes the EVSE visible/invisble on the map.

getAllEVSE Returns the positions and ID (for the map).

Module EVSE Pilot (Main Smart Contract)
Start Request Coins are transferred, not passed in parameter ! This generated an
event and stores the new TXId = TX[UserId][EVSEId].
InterruptRequest Request comes from the userId only. This generated an event.

ChargeInterrupted Transaction comes from the owner only. This generated an event
and updates the status of the TXId. It sends coins to the user and to the owner.
ChargeFinished Transaction comes from the owner only. This generated an event
and updates the status of the TXId.
GetTxById Returns the status of the transaction.

GetTxBYUserId Returns the transactions of the user and the status of these transac-
tions. Uses a cursor to had them one by one.

30

GetTxByEVSEId Returns the transactions of the EVSE and the status of these trans-
actions. Uses a cursor to had them one by one.

Module DAPP DEFev Creator
Login Uses Gimly Login process to allow the user to see other pages.

Dashboard Displays the EVSEs of the user and his past history of transac-
tions(charges).
View EVSE Detail EVSE frommodule DAPP DEFev.
Create EVSE Creates the EVSEBody of the EVSE: push the JSON to content storage
and create EVSEId in EVSEAddress Book.
my Account Displays the address currently connected and the settings the user de-
fined

Module Community EVSE Manager

Main When the EVSE replies OK, then EVSEMgr sends ChargeStarted to the Pilot.
When the EVSE replies OK, then EVSEMgr sends ChargeInterrupted to the Pilot.
After duration has expired EVSEMgr sends ChargeFinished to the Pilot

Module ScoringBoard Smart Contract
AddComment score Creates a score for the EVSEId, associated with the userId. The
aggregated score is updated (total score and nb of scores). A text can be added.
Read Aggregate Score The aggregated score = average score and number of scores.

Module Reputable BackEnd
Aggregate score The aggregated score is computed and returned to the
blockchain-based (average score and nb of scores). The unit score is also stored
offchain for future features.

2.2.8 OTCnLNG

Description The OTCnLNG solution offers new capabilities to tackle issues actors are
dealing with by generating transparent, traceable, accountable, secure data manage-
ment for LNG buyers and sellers, responsible sourcing, and green LNG products. It in-
cludes REST API based webservice, ontology-based data structures, smart contracts,

31

and relies on the following external services: OriginTrail DKG for handling knowledge
assets; and an EVM-compatible blockchain for deploying the OTCnLNG smart con-
tracts.

ApplicationProgramming Interfaces Theyuse thedkg.js, the Javascript SDK for using
OriginTrail DKG and provide the API Specification for REST Services.

Module dkg.js
DKG(params) Connect to the DKG API.

dkg.asset.create(content) Create an asset on DKG.

dkg.asset.get(UAL) Retrieve an asset from DKG.

dkg.graph.query(query, queryType) Query the DKG.

Module organizations This enables to manage organizations and their users.
https://<base_uri>/organizations/GET Get the list of organizations.

https://<base_uri>/organizations/POST Create a new organization.

https://<base_uri>/organizations/{orgDID}/generate-tokenPOST Create a registra-
tion token.

https://<base_uri>/organizations/{orgDID}/registration/{token}GET Create and reg-
ister a user as part of an organization

Module users This enables to log as user within a given organization, and to list
existing users.

https://<base_uri>/users/GET List all users.

https://<base_uri>/users/loginPOST Log in and get an auth token.

Module wallets This enables to manage the Ethereum wallets needed to interact
with the resource and offset tokens.

https://<base_uri>/wallets/GET List all the wallets public addresses.

https://<base_uri>/wallets/POST Create (generate) a new Ethereum wallet (key
pair stored on the platform).

32

Module knowledge-assets This enables to create and get knowledge assets.
https://<base_uri>/knowledge-assets/GET List all knowledge assets.

https://<base_uri>/knowledge-assets/POST Create a new knowledge asset.

https://<base_uri>/knowledge-assets/{UAL}GET Get the data for a given knowledge
asset.

Module dkg This is used to query DKG.
https://<base_uri>/dkg/GET Query DKG.

Module offset-tokens This enables create and get carbon credit/offset token/infor-
mation.

https://<base_uri>/offset-tokens/GET List all offset tokens owned by the users or-
ganization.

https://<base_uri>/offset-tokens/{offset-token-URI}GET Get the metadata related
to a given offset token.

https://<base_uri>/offset-tokens/POST Tokenize an amount of mitigated carbon.

Module resource-tokens This enables to handle resource tokens and to manage
association with carbon credit tokens.

https://<base_uri>/resource-tokens/GET List all resource tokens owned by the
users.

https://<base_uri>/resource-tokens/{resource-token-URI}GET Get the metadata re-
lated to a given resource token.

https://<base_uri>/resource-tokens/POST Tokenize the LNG volume of a given
cargo.

https://<base_uri>/resource-tokens/{resource-token-URI}/lockPOST Lock offsets to a
resource token.

https://<base_uri>/resource-tokens/{resource-token-URI}/unlockPOST Unlock off-
sets from a resource token (only the owner can do it).

https://<base_uri>/resource-tokens/{resource-token-URI}/transfer-to/{address}POST
Transfer some amount of resource tokens to a given address.

Module cargos This enables to handle specific knowledge assets: LNG cargos.
https://<base_uri>/cargos/GET List all cargo in the knowledge graph.

33

https://<base_uri>/cargos/{cargo-KA-DID}GET Get the data for a particular cargo in
the knowledge graph.

https://<base_uri>/cargos/POST Create a cargo KA from cargo data

Module ghg-assessments This provides means to handle emissions information
(GHG statements) as knowledge assets.

https://<base_uri>/ghg-assessments/GET List all GHG assessments in the knowl-
edge graph.

https://<base_uri>/ghg-assessments/{ghg-assessment-KA-DID}GET Get the data for a
particular GHG assessment in the knowledge graph.

https://<base_uri>/ghg-assessments/POST Create a GHG assessment KA.

2.2.9 CREATE

Description UNITT Content Registry And Tokenized Exchange (CREATE), is a digital
content marketplace that enables creators to distribute and monetize their creations
in a trustworthy and transparent manner while ensuring privacy. The marketplace will
be a solution that is intended toworkwith theONTOCHAIN infrastructure and software
and its future token(s), enabling content creators to exchange content for tokens from
other users on a pay-per-view basis.

Application Programming Interfaces CREATE contains four RESTAPI Controllers that
provide the integrations to the Core Services, smart contracts, and ONTOCHAIN and
other potential 3rd party services.

Module SEARCH CONTROLLER The Search Controller calls the smart contract
search method and parses the results. The Search service can also use a cache to
speed up queries.

https://api.create.unitt.io/search/<keyword>GET Search for published content
with search parameters.

ModuleCONTENT CONTROLLER TheContent Controller allows for: i) fetching con-
tent metadata from a given URL and constructs a preview result. ii) fetching full
content with given id. iii) adding, updating and removing content with correct cre-
dentials (signatures).

34

https://api.create.unitt.io/preview/<url>GET Preview online content meta-data.

https://api.create.unitt.io/content/<id>GET Resolve the full URL for the given
content id. URL is used to fetch the actual content (text body, video stream etc.).

https://api.create.unitt.io/contentPOST Add newmedia content.

https://api.create.unitt.io/content/signPOST Sign the transactionwith the user’s
key pair.

https://api.create.unitt.io/contentPUT Update your media content.

https://api.create.unitt.io/content/signPUT Sign the transaction with the user’s
key pair.

https://api.create.unitt.io/contentDELETE Remove media content.

https://api.create.unitt.io/content/signDELETE Sign the transaction with the
user’s key pair.

ModulePAYMENTCONTROLLER ThePaymentController handlespaymentswhen
purchasing content by consolidating transactions betweenONTOCHAIN token and
Pact smart contracts.

https://api.create.unitt.io/paymentPOST Pay for content.

https://api.create.unitt.io/payment/signGET Sign the transaction with the user’s
key pair.

Module USER CONTROLLER The User Controller Registers subscriber devices and
sends push notifications.

https://api.create.unitt.io/notificationPOST Subscribe to push notifications
with current authorization header, FCM token and device data.

2.2.10 DAOstar

Description DAOstar is a set of open, semantic API standards for DAOs and DAO ser-
vice providers, including EIP-4824 and DAOIP-3, built by a coalition of major DAOs,
DAO frameworks, and DAO tooling providers. The goal of the DAOstar project is to de-
velop standards that will ensure interoperability between both DAOs and DAO service
providers.

35

Application Programming Interfaces Please refer to the API schema in DAOIP-3
Attestations for DAOs, which have been implemented in full as part of this project.
Note that the standard has been updated based on their progress in the ONTOCHAIN
project, including a signature field as well as a reputation-specific attestation type, to
facilitate both REPUTABLE (which simply sums up reputation ratings) as well as poten-
tially different contracts that perform some sort of reputation aggregation.

2.2.11 INGRESS

Description INGRESS provides access to cryptographically secured credit history for
microlending in crypto and fiat currencies. The solutions addresses trust and security
issues of digital economyusing combination of biometric identificationwith asymmet-
ric cryptography. This enables individuals possessing the private keys of re-issuing the
credentials they own in unfortunate case of private key loss or compromise. INGRESS
wallet connects the users to themarketplace of loans, provided by the lenders. Lenders
compete among each other towin the users, which results in affordable credit for users
with good credit histories.

Application Programming Interfaces INGRESS provide the APIs specification for Bio-
metric SDK, Credit Bureau API and Biometric Bureau API.

Module Biometric SDK Biometric SDKmodule is used in both credit and biomet-
ric bureau REST services, as well as in the mobile application. This SDK generates
the biometric sample from the biometric data. Even though its open sourced, Bio-
metric SDK is a part of Iriscan background IP.

BiometricSdk.configure() Initial sdk configuration, should be called before anything
else.
BiometricSdk.getInstance() Get sdk operations, thread safe.

BiometricSdkConfigBuilder.withIris() Enable iris recognition operations.

BiometricSdkConfigBuilder.withFace() Enable face recognition operations.

BiometricSdkConfigBuilder.withFingerprint() Enable fingerprint recognition opera-
tions.
BiometricSdkConfigBuilder.build() Build configuration object used for sdk configu-
ration.
BiometricSdkOperations.io() Get IO operations (r/w biometric data, images, etc).

BiometricSdkOperations.qualityControl() Get image/biometric quality control opera-
tions.

36

https://github.com/metagov/daostar/blob/main/DAOIPs/daoip-3.md
https://github.com/metagov/daostar/blob/main/DAOIPs/daoip-3.md

BiometricSdkOperations.iris() Get iris opertaions.

BiometricSdkOperations.face() Get face opertaions.

BiometricSdkOperations.fingerprint() Get fingerprint opertaions.

InputOutputOperations.readRecord() Read biometric record from bytes.

InputOutputOperations.writeRecord() Write biometric record as bytes.

InputOutputOperations.readImage() Read image from bytes.

InputOutputOperations.writeImage() Write image as bytes.

QualityControlOperations.calulate() Test image quality.

IrisOperations.extractor() Returns interface for extract operations.

IrisOperations.encoder() Returns interface for encode operations

IrisOperations.matcher() Returns interface for match operations.

FaceOperations.extractor() Returns interface for extract operations.

FaceOperations.encoder() Returns interface for encode operations.

FaceOperations.matcher() Returns interface for match operations.

FpOperations.extractor() Returns interface for extract operations.

FpOperations.encoder() Returns interface for encode operations.

FpOperations.matcher() Returns interface for match operations.

IrisExtractor.extract() Extract biometrics from image.

IrisExtractor.extract() Extract biometrics from native image

IrisExtractor.extractRecord() Extract biometrics from image.

IrisEncoder.encode() Create biometric template from image.

IrisEncoder.encode() Create biometric template from native image.

IrisEncoder.extractAndEncode() Extract and create biometric template from image.

IrisEncoder.extractAndEncode () Extract and create biometric template from native
image.
IrisExtractor.encodeRecord() Create biometric template from image.

IrisMatcher.matches() Match biometric templates.

IrisMatcher.matches() Match biometric template records.

FaceExtractor.extract() Extract biometrics from image.

FaceExtractor.extract() Extract biometrics from image.

37

FaceExtractor.extractRecord() Extract biometrics from image.

FaceEncoder.encode() Create biometric template from image.

FaceEncoder.encode() Create biometric template from native image.

FaceEncoder.extractAndEncode() Extract and create biometric template from image.

FaceEncoder.extractAndEncode() Extract and create biometric template from native
image.
FaceEncoder.encodeRecord() Create biometric template from image.

FaceMatcher.matches() Match biometric templates.

FaceMatcher.matches() Match biometric template records.

FpExtractor.extract() Extract biometrics from image.

FpExtractor.extractRecord() Extract biometrics from image.

FpExtractor.encode() Create biometric template from image.

FpExtractor.encodeRecord() Create biometric template from image.

FpMatcher.matches() Match biometric templates.

FpMatcher.matches() Match biometric template records.

Module Credit Bureau Component of the system to verify user credit score and
manage loans. Endpoint: https://credit-bureau.ontochain.iriscan.net/api/v1.

/admin/admins/queryGET* Get all admin users.

/admin/adminsPOST* Create new admin user.

/admin/admins/{id}PUT* Update admin user.

/admin/admins/{id}DELETE* Deactivate user.

/admin/authenticatePOST Authenticate admin user.

/admin/authenticate/restore-passwordPOST Request restore password.

/admin/authenticate/restore-password/completePOST Complete restoring password.

/admin/users/queryGET* Get all users.

/users/auth/registerPOST Register new user in the system.

/admin/user/{id}DELETE* Deactivate user.

/admin/loans/queryGET* Get all loans.

/admin/loansPOST* Create new loan.

38

/admin/loans/{id}PUT* Update loan information.

/admin/loans/{id}DELETE* Close loan.

/admin/loan-offers/queryGET* Get all loan offers.

/admin/loan-offersPOST* Create new loan offer.

/admin/loan-offers/{id}PUT* Update loan offer information.

/admin/loan-offers/{id}DELETE* Delete loan offer.

/admin/loan-applications/queryGET* Get list of loan applications.

/admin/loan-applicationsPOST* Create new loan application.

/admin/loan-applications/{id}/confirmPOST* Confirm loan application.

/admin/loan-applications/{id}/denyPOST* Deny loan application.

/admin/loan-applications/{id}DELETE* Delete loan application.

/admin/dumpsPOST* Initiate db dump.

/admin/dumpsGET* Get all dumps.

/admin/dumps/{name}GET* Download zip dump.

Module Biometric Bureau Component of the system to cre-
ating/store and manage biometric credentials. Endpoint:
https://biometric-bureau.ontochain.iriscan.net/api/v1.

/admin/admins/queryGET* Get all admin users.

/admin/adminsPOST* Create new admin user.

/admin/admins/{id}PUT* Update admin user.

/admin/admins/{id}DELETE* Deactivate user.

/admin/authenticatePOST* Authenticate admin user.

/admin/authenticate/restore-passwordPOST* Request restore password.

/admin/authenticate/restore-password/completePOST* Complete restoring pass-
word.

/admin/users/queryGET* Get all users.

/admin/dumpsPOST* Initiate db dump.

/admin/dumpsGET* Get all dumps.

/admin/dumps/{name}GET* Download zip dump.

39

/users/auth/registerPOST* Enroll new user.

/users/id/update-keysPOST* Initiates keypair restore.

2.2.12 CAPS-CO

Description CAPS-COhas developed a practical application, a CarbonAccounting tool
to calculate product carbon footprint (PCF) and implement a corporate carbon ac-
counting (CCA) for manufacturers, resulting in transparent declared unit (DU) outputs
based around the COP26Pathfinder framework initiative (WBCSD, 2021). This tool de-
livers trusted, privacy-preserving, traceable, transparent, and legislation-compliant car-
bon accounting to European industry and incentivises emission-efficient operations.

Application Programming Interfaces The Core Application which implements API
endpoint is built so that it can run both in cloud and on-premise, including a config-
uration where it is self hosted by the Business Entity. During the project, two versions
of the CAPS-CO Carbon Accounting Application and API have been developed. Both
v1 and v2 versions as currently they compliment each other are provided. This is being
updated as we merge all the relevant endpoints into v2. Once this is done, v1 can be
discarded.

Module Companies - v1 This module allows the operation of Company entities.

/v1/company/createPOST Creates a new company.

Module Products - v1 This module allows the operation of Product entities.

/v1/product/createPOST Creates a new product.

/v1/product/getallGET Retrieves all products.

Module Activities - v1 Thismodule allows to enter and retrieve business Activities.
Activities data is used for CO2 emissions calculation.

/v1/activity/createPOST Creates a new activity, initiates CO2 calculation and to-
ken issuance.

/v1/activity/{productId}GET Retrieves all activities by product ID

40

Module User (Wallet) Authentication - v1 This module allows to operate User-
s/Wallets entities.

/v1/auth/checkWalletPOST Checks the wallet.

/v1/auth/signupPOST Signs up the wallet.

/v1/auth/signinPOST Signs in the wallet.

/v1/auth/signoutPOST Signs out the wallet.

Module Activities - v2 In the latest version of CAPS-CO API, Activity service is ex-
tended andmodified to implement the advanced logic of the solution. Support for
audit is included.

/v2/activity/createPOST Creates a new activity, logs inputs off-chain, calculates
Inputs Hash and Components Hash, and initiates on-chain record.

/v2/activity/{inputsHash}GET Retrieves all activity details by a publicly known in-
putsHash.

2.2.13 Low-code app builder

Description The project within the ONTOCHAIN ecosystem consists of developing a
low-code app builder to both ease the integration of different services of the ecosys-
tem and make themmore easily accessible to the end user by bundling them into an
app. In other words, the solution can be thought of as the bridge between the differ-
ent services of the ONTOCHAIN ecosystem and the end users. In more details, that
bridge is an application builder to enable the different ONTOCHAIN services to be bun-
dled and accessed via an app in a couple of clicks. To achieve this, they are partnering
with a few projects of the ecosystem, namely Babelfish, Perun and PiSwap, in order to
demonstrate how to integrate ones service into the low-code app builder.

Application Programming Interfaces The SDKs API is extensively described on the
README page of its repository. Three specific APIs, each one associated with a specific
service have been defined.

Module Component registry subscription An authenticated
API allowing another ONTOCHAIN project to register its own
component and associated data-sources. All components:
https://api.builderdev.startinblox.com/components/. All components of a specific

41

user: https://api.builderdev.startinblox.com/users/{{slug}}/components/.

/components/POST Entrypoint for registering a new component in the registry.

/components/GET Returns the list of components, potentially filtered according to
the query parameter.

/components/{{slug}}/GET Returns themetadata about the component identified
by the slug parameter, including its URI.

/components/{{slug}}/PUT Updates themetadata about the component identified
by the slug parameter.

/components/{{slug}}/DELETE Deletes the component from the registry

Module Application builder engine An authenticated API allowing a registered
user on our platform to initialise, configure and deploy an app. All applications:
https://api.builderdev.startinblox.com/applications/. All applications of a spe-
cific user: https://api.builder-dev.startinblox.com/users/{{slug}}/applications/

/users/{{username}}/applications/GET Returns the list of applications already ini-
tialised by username.

/applications/POST Adds a new app into the list of apps associated with the cur-
rent user

/applications/{{app-slug}}/GET Returns the description of the applications cre-
ated by a specific user, including their name, associated components, data-sources
and visual template.

/applications/{{app-slug}}/PUT Returns the updated description of the applica-
tion.

/applications/{{app-slug}}/DELETE Deletes the application from the registry.

Module Deployment engine An additional endpoint present on the application
builder side and an asynchronous pull mechanism on the deployment engine
side. Endpoint: https://api.builder-dev.startinblox.com/ansible/inventory/ and
https://api.builder-dev.startinblox.com/ansible/slug/.

/ansible/inventory/GET Returns a 200 - OK if everything went well or any kind of
4XX errors if there was a failure.

ansible/slug/GET Returns a 200 - OK if everything went well or any kind of 4XX
errors if there was a failure.

42

2.2.14 TRUSSIHEALTH

Description The TRUSSIHEALTH project proposes a decentralized and trustworthy
health information exchange system. It leverages the concepts of Self-Sovereign Iden-
tity (SSI) and related technologies. In particular, TRUSSIHEALTH will develop a middle-
ware that allows the conversationbetweenhealth data in FL7FHIRdata format and the
verifiable credential (VC) data format. VCs were specially designed to support SSIs by
providing an open and lightweight data format used for storing and exchanging data.
To add trust in the transformed health data, TRUSSIHEALTH will utilize the so-called
eIDAS bridge, a tool that allows to apply qualified and advanced electronic signatures
on VCs. This way, not only trust but also legal value is added to the transformed health
data VC.

Application Programming Interfaces The TRUSSIHEALTH service offers two public
API endpoints exposed by two modules, namely the import data module as well as
the export data module, each of them provides one public endpoint. The other com-
ponents cannot be called from outside the service but instead interact with different
components such as the VIDchain API (backend) or the wallet backend.

Module Import Data This module is the main module of TRUSSIHEALTH respon-
sible for the import data flow.

https://labs.vidchain.net/health-dataPOST Receive the health data object of a pa-
tient together with the DID related to it.

Module Export Data This module is involved in the sharing health data process
and called by the verifier / relying party.

https://labs.vidchain.net/health-data/<documentID>GET Called by the data receiver
after the user performed the verifiable presentation flow in order to receive the de-
crypted health data object.

2.3 ONTOCHAIN INTEROPERABILITY

The INTEROPERABILITY MODULES AND PROTOCOLS has multiple functions; first, it
will act as the backbone for interconnecting the other modules; second, it will provide
the ONTOCHAIN Gateway API, i.e. the main entry point for application developers; last,
it will provide essential services and building blocks to all of the modules and to the
applications, e.g. decentralised storage, identity management and data certification.

43

This important layer has been mainly offered by the solutions developed during the
first two years of the ONTOCHAIN project. As outlined in the D3.5 deliverable a and
depicted in the Figure 1, it is clarified that the OC1 and OC2 projects contribute to the
fulfillment of several modules of this layer. In particular, these projects establish the
foundational framework for interconnecting the other modules, providing indispens-
able services and foundational elements to all of modules and applications. For more
further details, we invite to refer to the D3.4 deliverable.

In this deliverable, we present the accomplishment of the INTEROPERABILITY MOD-
ULES AND PROTOCOLS layer’s second objective, achieved by the BABELFISH project.
Indeed, this project has successfully implemented the defined Gateway APIs, which fa-
cilitate a single entry point for upcoming developers and users. Section 3 describes all
these Gateway APIs in detail.

44

3 ONTOCHAIN GATEWAY API

The ONTOCHAIN Gateway API is the single-entry point for developers and users of ON-
TOCHAIN services. It is composed of three main modules:

1. Service Discovery lets programs search deployedONTOCHAIN services with struc-
tured queries and access them directly.

2. Accounts Management provides functions related to user accounts and access
rights.

3. Data Storage lets users and program upload data that can then be used by ON-
TOCHAIN services, and download certain data that has been produced by ON-
TOCHAIN services.

Each of thesemodules are already described in Section 3 of the D3.5 deliverable, along
with the details of the API functions they provide.

These APIs, defined by the ONTOCHAIN consortium, were part of the Open Call 3 ma-
terial and provided to the BABELFISH project selected in OC3. This section details the
GATEWAY APIs implemented by BABELFISH.

Data stored via the Gateway can be stored using either on-chain storage:

Bellecour: iExec Sidechain as the pilot infrastructure for ONTOCHAIN projects

Convex: decentralised ledger provided by the non-profit Convex Foundation and/or
off-chain storage:

Semantic Container: transient data store for SMEs (see below)

AWS S3: scalable, secure, and web-based cloud storage from Amazon

The API is documented in an HackMD document here:
https://hackmd.io/faNBTCUcSRyQsLOf_Jhdag?view.
The sources together with documentation is available on Github:
https://github.com/OwnYourData/dc-babelfish.
To interact with the REST APIs a Postman collection is available for import at the fol-
lowing location:
https://github.com/OwnYourData/dc-babelfish/tree/main/tutorial/postman

45

https://hackmd.io/faNBTCUcSRyQsLOf_Jhdag?view
https://github.com/OwnYourData/dc-babelfish
https://github.com/OwnYourData/dc-babelfish/tree/main/tutorial/postman

3.1 SERVICE DISCOVERY APIS

Service Discovery APIs provide a programmable way of discovering the services pro-
vided through the ONTOCHAIN ecosystem. The catalog provides search mechanisms
and return pointers to the service implementations directly to the clients, in the formof
API endpoints when available. The search features support advanced ontology-based
queries so that consumer applications can search for services based on functionalities,
implement their own selection algorithm and start consuming the services without
requiring specific human interactions.

Module Services catalog This module will provide a programmable way of dis-
covering the services provided through the ONTOCHAIN ecosystem. Access to the
functions will be authenticated and regular users will only have access to read op-
erations. Write operations will be accessible only to administrators, unless noted in
the function’s description.

<base_uri>/list?page=X&items=XGET Retrieve Service Catalogue List (public). Ob-
tain a paged list of all available services; the filter can contain every field from re-
source description schema.
Arguments: page - selected page (default: 1) and items - number of items per page
(default: 20).
Return value: (array of json objects) services matching query.

<base_uri>/service?query_field=query_value&field2=value2GET Query Service Cata-
logue List (public). Obtain a list of services which name or description match the
provided search terms.
Arguments: service catalogue query in the format field, value.
Return value: (array of json objects) services matching query.

<base_uri>/service/SERVICE_IDGET Read Service Description (public). Obtain de-
tails of a service description.
Arguments: service_id - numerical identifier of service.
Return value: JSON object with service description.

<base_uri>/servicePOST Create Service Description. Provide details of a service
description and persist on the configured storage.
Arguments: body - JSON object with service description.
Return value: JSON object with name of the service and assigned service-id.

<base_uri>/service/SERVICE_IDPUT Update Service Description. Provide details of
a service description and update on the configured storage.
Arguments: service_id - numerical identifier of service and body - JSON object with
service description.
Return value: JSON object with name of the service and assigned service-id.

46

<base_uri>/service/SERVICE_IDDELETE Delete Service Description. Mark service as
deleted on the configured storage.
Arguments: service_id - numerical identifier of service.
Return value: JSON object with name of the service and assigned service-id.

3.2 ORGANIZATION AND USER ACCOUNTS APIS

Users in the ONTOCHAIN ecosystem can be either consumers or providers of services,
or both. Users can be attached to an organization or be registered independently. The
goal if thismembershipmodel is both to drive engagement, by providing ONTOCHAIN
with specific features (e.g. a user portal) and to manage accounting, i.e. payment for
services and crypto-wallets.

Module Accounts management This module provides interfaces for creating
users and organizations, and basic interactions with wallets. All API calls must be
authenticated (i.e. non public) and write operations are accessible only to adminis-
trators.

<base_uri>/organization/ORGANIZATION_IDGET Read Organisation. Obtain details of
an organisation.
Arguments: organization_id - numerical identifier of organisation.
Return value: JSON object with organisation details.

<base_uri>/organization/ORGANIZATION_ID/metaGET Read Organisation. Obtain
metadata of an organisation.
Arguments: organization_id - numerical identifier of organisation.
Return value: JSON object with organisation metadata.

<base_uri>/organization/currentGET Read Current Organisation Obtain details of
current organisation (based on provided Bearer Token).
Arguments: none.
Return value: JSON object with current organisation details.

<base_uri>/organization/POST Create Organisation Provide details of an organi-
sation and persist on the configured storage.
Arguments: body - JSON object with organisation details.
Return value: JSON object with name of the organisation and assigned
organization-id.

<base_uri>/organization/ORGANIZATION_IDPUT Update Organisation Provide details
of an organisation and update on the configured storage.
Arguments: organization_id - numerical identifier of organisation and body - JSON
object with organisation details.

47

Return value: JSON object with name of the organisation and assigned
organization-id.

<base_uri>/organization/ORGANIZATION_IDDELETE Delete OrganisationMark organ-
isation as deleted on the configured storage.
Arguments: organization_id - numerical identifier of organisation.
Return value: JSON object with name of the organisation and assigned
organization-id.

<base_uri>/organization/ORGANIZATION_ID/listGET Retrieve User List for Organisa-
tion obtain a list of users for given organisation
Arguments: organization_id - numerical identifier of organisation.
Return value: (array of JSON objects) users of the organisation

<base_uri>/user/USER_IDGET Read User. Obtain details of a user.
Arguments: user_id - numerical identifier of user.
Return value: JSON object with user details.

<base_uri>/user/USER_ID/metaGET Read User. Obtain metadata of a user.
Arguments: user_id - numerical identifier of user.
Return value: JSON object with metadata of user.

<base_uri>/user/currentGET Read Current User Obtain details of current user
(based on provided Bearer Token).
Arguments: none.
Return value: JSON object with current user details.

<base_uri>/userPOST Create User Provide details of a user and persist on the con-
figured storage.
Arguments: body - JSON object with user details.
Return value: JSON object with name of the user and assigned user-id.

<base_uri>/user/USER_ID/PUT Update User Provide details of a user and update on
the configured storage.
Arguments: user_id - numerical identifier of user and body - JSON object with user
details.
Return value: JSON object with name of the user and assigned user-id.

<base_uri>/user/USER_ID/DELETE Delete UserMark user as deleted on the config-
ured storage and remove all personally identifiable information.
Arguments: user_id - numerical identifier of user.
Return value: JSON object with name of the user and assigned user-id.

3.3 DATA STORAGE APIS

Data storage is a special kind of service in the way they provide a communication
medium between other services. In order to facilitate these interactions, the Data

48

storage module provides high-level interfaces for storing and retrieving files and ar-
bitrary blobs of data to and from providers, including external storage providers such
as Amazon S33, Dropbox4 and IPFS5. The underlying storage providers will be selected
in the last year of the project, based on the requirements of the applications selected
in OC3.

Module Data storage Themodule provides users and applications with high-level
interfaces that are common to all of the supported backend storage services, both
members of the ONTOCHAIN ecosystem, and external services. Storage providers
can be searched in the Service catalog like any other service (see Section 3.1).

<base_uri>/collection/listGET Read Organisation List. Obtain the list of collec-
tion of objects.
Arguments: none.
Return value: (array of JSON objects) collection-id and name of collections.

<base_uri>/collection/COLLECTION_IDGET Read Collection. Obtain details of a col-
lection.
Arguments: collection_id - numerical identifier of collection.
Return value: JSON object with collection details.

<base_uri>/collection/COLLECTION_ID/metaGET Read Collection Obtain metadata of
a collection.
collection_id - numerical identifier of collection.
Return value: JSON object with collection details.

<base_uri>/collectionPOST Create Collection Provide details of a collection and
persist on the configured storage.
Arguments: body - JSON object with collection details.
Return value: JSON object with name of the collection and assigned collection-id.

<base_uri>/collection/COLLECTION_IDPUT Update CollectionProvide details of a col-
lection and update on the configured storage.
Arguments: collection_id - numerical identifier of collection and body - JSON ob-
ject with collection details.
Return value: JSON object with name of the collection and assigned collection-id.

<base_uri>/collection/COLLECTION_IDDELETE Delete Collection Mark collection as
deleted on the configured storage.
Arguments: collection_id - numerical identifier of collection.
Return value: JSON object with name of the collection and assigned collection-id.

<base_uri>/object/OBJECT_ID/USER_IDPOST Check Object Access Checks the access
control for a particular user to access a particular object.

3https://aws.amazon.com/s3/
4https://www.dropbox.com/
5https://ipfs.io/

49

https://aws.amazon.com/s3/
https://www.dropbox.com/
https://ipfs.io/

Arguments: object_id - numerical identifier of object and user_id - numerical iden-
tifier of user.
Return value: JSON object with name of object, assigned collection-id and object-
id, and object access information.

<base_uri>/object/OBJECT_IDGET Read Object. (metadata) Obtain details related
to and object.
Arguments: object_id - numerical identifier of object.
Return value: JSON object with object details (metadata).

<base_uri>/object/OBJECT_ID/readGET Read User. (object itself) Obtain the object.
Arguments: object_id - numerical identifier of object.
Return value: JSON object (object itself).

<base_uri>/objectPOST Create Object (metadata) Provide details of an object and
persist on the configured storage.
Arguments: body - JSON object with object details.
Return value: JSON object with name of object and assigned object-id & collection-
id.

<base_uri>/object/OBJECT_ID/writePUT Write object (object itself) Provide object
and persist on the configured storage.
Arguments: object_id - numerical identifier of object and body - JSONobject (object
itself).
Return value: JSON object with name of object and assigned object-id & collection-
id.

<base_uri>/object/OBJECT_IDPUT Update Object (metadata) Provide details of an
object and update on the configured storage.
Arguments: object_id - numerical identifier of object and body - JSON object with-
object metadata.
Return value: JSON object with name of object and assigned object-id & collection-
id.

<base_uri>/object/OBJECT_ID/DELETE Delete ObjectMark object as deleted on the
configured storage.
Arguments: object_id - numerical identifier of object.
Return value: JSON object with name of object and assigned object-id & collection-
id.

50

4 PILOT NETWORK

The Bellecour sidechain has been adopted for the pilot use-cases of the ONTOCHAIN
project. As already detailed in Section 4 of the D3.5 deliverable, this technology
solves many well-known blockchain issues and offers new opportunies for using the
blockchain technologies in various application domains. Moreover, the decision of rely-
ing on the EVM for the main ONTOCHAIN chain will ensure that upcoming updates to
the Ethereum protocol and implementation will benefit past, current and future ON-
TOCHAIN services and applications. Indeed, since almost all ONTOCHAIN services sit
at the application layer, they will remain compatible with Ethereumupdates (to the ex-
ception of GraphChain which relies on a modified Hyperledger Besu client which may
require a small update in order to support Ethereum 2.0).

The foundation and the developer’s liabilities of the pilot network are detailed in Sec-
tion 4 of the D3.5 deliverable. In this section, we provide the update of the pilot use-
case, specifically the node deployment process and the current specification of these
nodes.

4.1 NODE DEPLOYMENT PROCESS

As already mentioned in D3.5, the pilot network involves 8 validators and 8 fullnodes
deployed in 4 countries: France hosted by iExec, Slovenia hosted by University of Ljubl-
jana, Greece hosted by University of Athens and Italy hosted by IntelliSemantic.

The notablemodification of these nodes is the clientmigration fromOpenEthereum to
Nethermind. Indeed, Openethereum client is becoming deprecated and Nethermind
is the only production client that supports theAuRa consensusmechanism, used in the
Bellecour sidechain. All node operators (fullnode and validator nodes) must migrate or
be deployed their nodes to use Nethermind client. Unfortunately themigration cannot
use the existing data of Openethereum client. Nethermind node needs to be synchro-
nized from scratch.

The steps to do the migration are detailed at https://github.com/ONTOCHAIN/
bellecour-node-deployer and are the following ones.

For full nodes:

1. In a new folder, different from the folder used for the old node, clone this repository:

1 $ git clone https : / / github .com/ONTOCHAIN/ bellecour−node−deployer . git
2 $ cd bellecour−node−deployer / fullnode

51

https://github.com/ONTOCHAIN/bellecour-node-deployer
https://github.com/ONTOCHAIN/bellecour-node-deployer

2. Create a copy of the .env.template file and replace placeholders with your config.

1 $ cp . env . template . env

Use the same config values as the old node:

INSTANCE_NAME ==> NETSTATS_NAME

CONTACT_DETAILS ==> NETSTATS_CONTACT_EMAIL

WS_SECRET ==> NETSTATS_SECRET

3. Run docker compose:

1 $ docker−compose up −d

4. Check the logs of the bellecour-fullnode container, you should see something like:

1 $ docker container logs − f bellecour−fullnode
2

3 . . .
4 2023−05−17 13:30:08.2468|Old Headers 32064 / 20069000 | queue 9024 | current

0.00bps | total 6566.03bps
5 2023−05−17 13:30:08.2468|Downloaded 20072685 / 22156140 | current 888.69bps |

total 924.79bps
6 2023−05−17 13:30:09.2458|Old Headers 43392 / 20069000 | queue 5376 | current

11340.33bps | total 7380.70bps
7 2023−05−17 13:30:09.2458|Downloaded 20073320 / 22156140 | current 635.66bps |

total 866.44bps
8 2023−05−17 13:30:10.0928|Discovered new block 22325588 13:30:10 (0x618474...278916)

, tx count : 1 miner 0x02bbe17b1ee0e35d20d653fc39c8bb086af71d53, sent by [Peer |
eth66|22325588| 51.136.117.95:30303], with AuRa step 336866042

9 2023−05−17 13:30:10.2453|Old Headers 51840 / 20069000 | queue 4032 | current
8452.36bps | total 7536.96bps

10 2023−05−17 13:30:10.2453|Downloaded 20074084 / 22325588 | current 764.39bps |
total 849.29bps

11 . . .

Whichmeans that the node is syncing with the network. This operation takes time
as the node will download all blocks of the chain from other peers.

5. The node should appear on Netstats interface https://netstats.bellecour.iex.ec.

6. Stop the old node and purge its data to free up some disk space. Go to the old
fullnode folder and run:

1 $ docker−compose down −−volumes

For validator nodes:

52

https://netstats.bellecour.iex.ec

1. The new Nethermind node should only start to sync once the old node is stopped.
Go to the old validator folder and run:

1 $ docker−compose down

2. In a new folder, different from the folder used for the old node, clone this repository:
1 $ git clone https : / / github .com/ONTOCHAIN/ bellecour−node−deployer . git
2 $ cd bellecour−node−deployer / val idator

3. Create a copy of the .env.template file and replace placeholders with your config:
1 $ cp . env . template . env

Use the same config values as the old node:

MINING_KEY_ADDRESS ==> MINING_KEY_ADDRESS

INSTANCE_NAME ==> NETSTATS_NAME

CONTACT_DETAILS ==> NETSTATS_CONTACT_EMAIL

WS_SECRET ==> NETSTATS_SECRET

4. Setup themining key file. Copy theMining key file in the same folder as the docker-
compose and rename it to validator-wallet-key.file.

5. Setup the password file. Unlike Openethereum, Nethermind does not use
env variables for wallet passwords. It uses files instead. So the con-
tent of the old variable MINING_KEY_PASSWORD should be saved in a file named
validator-wallet-password.file next to docker-compose.yml.

6. Run docker compose:
1 $ docker−compose up −d

7. Check the logs of the container bellecour-validator, you should see something like:
1 $ docker container logs − f bellecour−val idator
2

3 . . .
4 2023−05−17 13:30:08.2468|Old Headers 32064 / 20069000 | queue 9024 | current

0.00bps | total 6566.03bps
5 2023−05−17 13:30:08.2468|Downloaded 20072685 / 22156140 | current 888.69bps |

total 924.79bps
6 2023−05−17 13:30:09.2458|Old Headers 43392 / 20069000 | queue 5376 | current

11340.33bps | total 7380.70bps
7 2023−05−17 13:30:09.2458|Downloaded 20073320 / 22156140 | current 635.66bps |

total 866.44bps

53

8 2023−05−17 13:30:10.0928|Discovered new block 22325588 13:30:10 (0x618474...278916)
, tx count : 1 miner 0x02bbe17b1ee0e35d20d653fc39c8bb086af71d53, sent by [Peer |
eth66|22325588| 51.136.117.95:30303], with AuRa step 336866042

9 2023−05−17 13:30:10.2453|Old Headers 51840 / 20069000 | queue 4032 | current
8452.36bps | total 7536.96bps

10 2023−05−17 13:30:10.2453|Downloaded 20074084 / 22325588 | current 764.39bps |
total 849.29bps

11 . . .

Whichmeans that the node is syncing with the network. This operation takes time
as the node will download all blocks of the chain from other peers.

8. The node should appear on Netstats interface https://netstats.bellecour.iex.ec.

9. Remove the old validator’s data to free up disk space. Go to the old validator folder
and run:

1 $ docker−compose down −−volumes

4.2 STATUS OF THE ONTOCHAIN NETWORK

The details specification of validator and full nodes have been updated in Table 1 and
Table 2.

54

https://netstats.bellecour.iex.ec

Validator
Node Info

University of
Ljubljana IntelliSemantic

Athens
University of
Economics

and Business

iExec

Number of
deployed
node

1 1 1 5

Hosted
over Physi-
cal/Virtual
platform

Cloud: The
Academic and

Research
Network of
Slovenia
(ARNES)

Cloud: Linode
provider On-Premise Azure Virtual

Machine

Month of
deploy-
ment

April 2022 May 2022 April 2022 September
2019

Up-Time
for Valida-
tor

100% 100% 100% 100%

Hardware
descrip-
tion

8GB
RAM/100GB
Storage/4 CPU

cores

8GB RAM/160
GB Storage/4
CPU cores

16GB
RAM/500GB
Storage (SSD)/
4 CPU cores

8GB
RAM/16GB

Storage (SSD)/
2 CPU cores

Software
depen-
dencies

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Docker and
Docker-
Compose,

Veracrypt, Keys
generation
Dapp, PoA
Smart

Contracts

Number
of Blocks
Validated
(mined)

916,207 890,807 714,357 4,776,740

Number
of Trans-
action
executed

185,092 193,062 113,559 1,015,255

TABLE 1: VALIDATOR NODES RELATED INFORMATION.

55

https://www.arnes.si/about-arnes/
https://www.linode.com/
https://www.linode.com/
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.veracrypt.fr/en/Home.html
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://ceremony-bellecour.iex.ec/#just-generate-keys
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard
https://www.poa.network/v/master-1/for-developers/smart-contract-dashboard

Full Node
Info

University of
Ljubljana IntelliSemantic

Athens
University of
Economics

and Business

iExec

Number of
deployed
node

1 1 1 5

Hosted
over Physi-
cal/Virtual
platform

Cloud: The
Academic and

Research
Network of
Slovenia
(ARNES)

Cloud: Linode
provider On-Premise Azure Virtual

Machine

Month of
deploy-
ment

February 2022 February 2022 April 2022 September
2019

Up-Time
for Full
node

100% 100% 100% 100%

Hardware
descrip-
tion

16GB RAM/
80GB Storage/
4 CPU cores

8 GB RAM/160
GB Storage/4
CPU cores

16GB
RAM/1TB
Storage

(SSD)/4 CPU
cores

8GB RAM/16
Storage

(SSD)/8 CPU
cores

Software
depen-
dencies

Docker and
Docker-

Compose, PoA,
NetStat

Docker and
Docker-

Compose, PoA,
NetStat

Docker and
Docker-

Compose, PoA,
NetStat

Docker and
Docker-

Compose, PoA,
NetStat

TABLE 2: FULL NODES RELATED INFORMATION.

56

https://www.arnes.si/about-arnes/
https://www.linode.com/
https://www.linode.com/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/
https://www.poa.network/v/master-1
https://netstat-bellecour.iex.ec/

5 CONCLUSION

This deliverable brought together the outcomes created by the thirty four projects, de-
veloped betweenMarch 2021 to August 2023. In particular, it provided the additional
results offered by the OC3 projects to the ONTOCHAIN framework. The OC3 had two
main objectives that have been successfully reached: completing the missing blocks
of the ONTOCHAIN infrastructure and developing real-life use cases by including the
ONTOCHAIN ecosystem. Thus, the final architecture of the ONTOCHAIN project is also
presented and highlights the modules completed by all the ONTOCHAIN projects.

As described in the D3.5 deliverable, the OC1 and OC2 projects contribute to the im-
plementation of several modules of ONTOLOGIES, DISTRIBUTED LEDGERS and INTER-
OPERABILITYMODULES ANDPROTOCOLS layers. In addition, theOC3 projects enable
to append new functionalities of the ONTOCHAIN framework, help for developing dif-
ferent components within the ONTOCHAIN framework and develop new real-life use
case applications. In particular, the Gateway APIs module has been implemented by
theBABELFISHproject and theConvexGlobal DLT add a newdistributed technology to
the DISTRIBUTED LEDGERS layer. The other OC3 projects has successfully completed
all the 9 modules of the APPLICATIONS layer.

Concerning the pilot network, there was no major modification made during this last
year of the ONTOCHAIN project. In term of the deployed nodes, a seamless transition
from Openethereum client to Nethermind has been carry out by the consortium. In
this document, we recalled the deployment process of a validator and full node with
the Nethermind client in this document. Moreover, this transition has not affected the
performance of these node, since they continue to be available at 100% while effec-
tively validating a considerable volume of transactions and blocks.

In conclusion, this deliverable described the specifications of the Gateway APIs and can
be served as a reference of the final framework. Thus, this document could be provided
to the future developers and users of the ONTOCHAIN ecosystem, willing use the ON-
TOCHAIN functionalities and services.

57

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	ONTOCHAIN Architecture
	Architecture design
	Components description
	ONTOCHAIN Interoperability

	ONTOCHAIN GATEWAY API
	Service Discovery APIs
	Organization and user accounts APIs
	Data Storage APIs

	Pilot network
	Node deployment process
	Status of the ONTOCHAIN network

	Conclusion

